

AN ARTIFICIAL IMMUNE SYSTEM-INSPIRED MULTIOBJECTIVE
EVOLUTIONARY ALGORITHM WITH APPLICATION TO THE DETECTION

OF DISTRIBUTED COMPUTER NETWORK INTRUSIONS

THESIS

Charles Richard Haag, Captain, USAF

AFIT/GCS/ENG/07-05

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GCS/ENG/07-05

AN ARTIFICIAL IMMUNE SYSTEM-INSPIRED MULTIOBJECTIVE
EVOLUTIONARY ALGORITHM WITH APPLICATION TO THE DETECTION

OF DISTRIBUTED COMPUTER NETWORK INTRUSIONS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Charles Richard Haag, B.S.C.S.

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/07-05

AN ARTIFICIAL IMMUNE SYSTEM-INSPIRED MULTIOBJECTIVE
EVOLUTIONARY ALGORITHM WITH APPLICATION TO THE DETECTION

OF DISTRIBUTED COMPUTER NETWORK INTRUSIONS

Charles Richard Haag, B.S.C.S.

Captain, USAF

Approved:

AFIT/GCS/ENG/07-05

Dedicated to my mother of 63 years who unexpectedly passed away near the

completion of this research. You never pushed me to be someone you wanted; rather, you

trusted and supported every decision I made for myself. I know you’ll be at my

graduation—just not in the seat next to me.

iv

AFIT/GCS/ENG/07-05

Abstract

Today’s predominantly-employed signature-based intrusion detection systems are

reactive in nature and storage-limited. Their operation depends upon catching an instance

of an intrusion or virus after a potentially successful attack, performing post-mortem

analysis on that instance and encoding it into a signature that is stored in its anomaly

database. The time required to perform these tasks provides a window of vulnerability to

DoD computer systems. Further, because of the current maximum size of an Internet

Protocol-based message, the database would have to be able to maintain 25665535 possible

signature combinations. In order to tighten this response cycle within storage constraints,

this thesis presents an Artificial Immune System-inspired Multiobjective Evolutionary

Algorithm intended to measure the vector of tradeoff solutions among detectors with

regard to two independent objectives: best classification fitness and optimal hypervolume

size. Modeled in the spirit of the human biological immune system and intended to

augment DoD network defense systems, our algorithm generates network traffic detectors

that are dispersed throughout the network. These detectors promiscuously monitor

network traffic for exact and variant abnormal system events based on only the detector’s

own data structure and the application domain truth set, responding heuristically.

The application domain employed for testing was the MIT-DARPA 1999

intrusion detection data set, composed of 7.2 million packets of notional Air Force Base

network traffic. Results show our proof-of-concept algorithm correctly classifies at best

86.48% of the normal and 99.9% of the abnormal events, attributed to a detector affinity

threshold typically between 39-44%. Further, four of the 16 intrusion sequences were

classified with a 0% false positive rate.

v

Acknowledgments

My first thanks always to my Lord and Savior Jesus Christ for giving me all I

have. Proverbs 16:9 states, “A man’s heart deviseth his way, but the LORD directeth his

steps.” It is to my good fortune the LORD decided I should attend AFIT. This

knowledge and experience serve a greater purpose I have yet to discover. My sincere

thanks and heartfelt appreciation to my thesis advisor, Dr. Gary Lamont for showing me

that insight begins with the pedagogical example. I also wish to thank my academic

advisor and thesis committee member Dr. Paul Williams, Maj, USAF, for his hours of

technical expertise and thesis I first looked at that inspired me to formulate the

methodology and mechanics of my core research. Thanks to Dr. Peterson who gave and

taught the tools to decipher this research’s data sets, saving me hours of analysis. I also

wish to thank Lt. Col. Timothy Halloran, USAF, for his software engineering precepts

and provided project skeletons that unwittingly became the foundation of my software

design, GUI layout and seamless use of XML in data saving and loading.

My deepest gratitude and appreciation to the United States Air Force for allowing

me this highly selective, challenging and unique opportunity to earn my degree from this

Air Force’s premier hub for research and development. I’ll always remember the words

of former Commandant Brigadier General Mark T. Matthews at my first Commandant’s

Call: “You may think coming back to school from the operational world is going to be

relaxing and laid-back. To the contrary, this may be the toughest assignment of your

entire life.” 21 months, 17 classes and one thesis later, I couldn’t agree more.

 Charles R. Haag

vii

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents.. vii

List of Figures ... xii

List of Tables ... xvi

List of Algorithms... xvii

List of Equations .. xviii

List of Abbreviations ... xix

I. Introduction ...1

1.1 Problem Motivation..2

1.2 Research Focus...8

1.2.1 Problem Domain Scope.. 8

1.2.2 Approach .. 10

1.3 Research Hypothesis ..10

1.4 Benchmarks of Validation..13

1.5 Thesis Overview...14

II. Literature Review..15

2.1 The Intrusion Detection System ...15

2.1.1 IDS Topologies... 16

2.1.2 Signature and Anomaly Detection Methods... 20

2.2 The Human Biological Immune System (BIS) ..23

2.2.1 Pattern Recognition, Positive Selection and Negative Selection 30

2.2.2 Clonal Selection Theory ... 32

viii

2.3 Artificial Immune Systems (AIS)...35

2.3.1 Landscape and Ab-Ag Representation ... 38

2.4 Search Algorithms ..42

2.4.1 Deterministic Search .. 43

2.4.2 Stochastic Search and the Evolutionary Algorithm.................................... 44

2.5 Multiobjective Evolutionary Algorithms ...47

2.6 Single and Multiobjective Optimization ..49

2.7 Pareto Optimality and Nondominance ...51

2.8 Summary...53

III. High-Level Design and Specification...54

3.1 Formal Problem Classification ...54

3.2 Space Complexity and Search Landscape..56

3.3 Integrating an MOEA with the Generic AIS Model ..60

3.4 AIS Application Domain..61

3.5 jREMISA: A Continued Work ...61

3.5.1 REALGO History... 62

3.5.2 MISA History ... 63

3.6 jREMISA Design..64

3.6.1 Data Representation.. 65

3.6.2 Population Initialization and Negative Selection 66

3.6.3 Evaluation (Fitness) Functions ... 67

3.6.4 Recombination, Somatic Hypermutation and Affinity Maturation............ 70

ix

3.6.5 Selection Operator .. 71

3.6.6 Detector and Generational Lifecycle.. 73

3.6.7 Calculating the Pareto Front... 73

3.6.8 Distributed AIS Communication.. 74

3.7 Summary...75

IV. Low Level Design and Implementation ..77

4.1 Hardware and Software Requirements...78

4.2 REALGO and MISA C-To-Java Language Translation78

4.2.1 The Model-View-Controller Paradigm .. 79

4.3 Data Signature Design..81

4.3.1 Antigen Data Set Encoding .. 82

4.3.2 Antibody Population Generation.. 89

4.4 AIS-Inspired MOEA Pseudocode ..91

4.4.1 Phase I: Negative Selection .. 94

4.4.2 Phase II: Core MOEA .. 95

4.5 Distributed Communication Model..101

4.6 Population Persistence..103

4.7 Summary...105

V. Experimentation and Analysis ..106

5.1 Experimental Objectives and Design ...106

5.1.1 Testing Environment .. 107

5.1.2 Test Functions and Data Sets ... 108

5.2 C-to-Java Migration..109

x

5.3 1999 MIT-DARPA ID Data Set Evaluation...116

5.3.1 Negative Selection Results ... 120

5.3.2 Standalone MOEA Results... 124

5.3.3 Distributed MOEA Results... 132

5.4 Other MIT-DARPA ID Data Set Evaluation Algorithms134

5.5 Summary...136

VI. Conclusions and Future Work ...138

6.1 Hypothesis Conclusion...138

6.2 Conjectures Based on this Research...141

6.2.1 Modeling the Innate Immune System... 141

6.2.2 Protocol-Based Antibody Populations ... 142

6.3 jREMISA: “The Way Ahead” ..143

6.4 Continued Research Need ..144

6.4.1 Suitability of the MIT-DARPA ID data sets .. 145

6.4.2 “Cyber Storm”: the next ID data set? ... 147

6.5 Summary...147

Bibliography ..149

Appendix A: ID-Domain Stochastic Search Algorithms.. A-1

A.1 Simulated Annealing (SA).. A-1

A.2 Tabu Search (TS).. A-4

A.3 Genetic Algorithm (GA)... A-5

A.4 Evolutionary Strategy (ES)... A-6

A.5 Evolutionary Programming (EP) .. A-6

xi

A.6 Ant Colony Optimization (ACO) ... A-7

Appendix B: MIT-DARPA 1999 Week 2 Truth Set Mapping ..B-1

Appendix C: KDD Cup 99 Data Set ..C-1

Appendix D: jREMISA User Manual and Source Code .. D-1

D.1 Quick Start Guide ... D-1

D.2 User Manual ... D-3

D.2.1 Compiling and execution... D-3

D.2.2 Negative Selection menu (Figure 58).. D-4

D.2.3 MOEA Menu (Figure 59) .. D-5

D.2.4 “Data Structure [MIT-DARPA 99]” Menu (Figure 61) D-9

D.2.5 “Data Structure [KDD Cup 99]” Menu (Figure 62) D-10

D.2.6 “Packet Ops” Menu (Figure 63) .. D-11

D.3 jREMISA file hierarchy and UML class diagram.. D-13

D.4 Special Source Code... D-17

D.5 Source Code Availability.. D-17

Appendix E: Recommended Software Engineering PrinciplesE-1

Appendix F: The Benefits of Open-Source Software ..F-1

Vita ……………………………………………………………………………………..V-1

xii

List of Figures

Page

Figure 1: Virus and worm growth trend: Jan 01 – Jun 04 [Symantec04] 6

Figure 2: Bot variant growth trend: Jan 03 – Jun 04 [Symantec04] 6

Figure 3: Denial-of-Service attack trend, January-June 2006 [Symantec06] 7

Figure 4: New vulnerabilities trend, January-June 2006 [Symantec06]............................. 7

Figure 5: Example of Ab-Ag complimentary matching [adapted from Timmis04]......... 24

Figure 6: Biological Immune System anatomy (lymphoid organs).................................. 27

Figure 7: BIS multi-layer defense structure.. 29

Figure 8: Antigen binding by multiple antibodies .. 31

Figure 9: The Clonal Selection Principle.. 33

Figure 10: Example of shape-space representation of an affinity landscape [adapted from

Timmis02] .. 35

Figure 11: Layered AIS framework [Timmis02].. 37

Figure 12: Recognition region shape-space: a paratope (•) recognizes any epitope

complement (X) within surrounding volume Vε .. 39

Figure 13: Hamming distance calculation between two binary molecules of length L = 8

.. 41

Figure 14: Pareto front (denoted by bold line) of a bi-objective minimization problem.. 52

Figure 15: Two-dimensional search landscape example [adapted from Williams01]...... 58

Figure 16: Negative selection process [HF00].. 59

Figure 17: REALGO algorithm flowchart [adapted from ELR06] 63

xiii

Figure 18: Example of transient Ags evaluated against its IP protocol-matching Ab...... 70

Figure 19: Elitist selection operator process... 72

Figure 20: Mapping of BIS distributed components to a distributed AIS 75

Figure 21: Model-View-Controller architecture [Halloran05] ... 80

Figure 22: jREMISA’s MIT-DARPA chromosome construction menu 83

Figure 23: jREMISA’s KDD Cup 99 chromosome construction menu 83

Figure 24: IP datagram packet [Stevens94] .. 85

Figure 25: TCP packet [Stevens94] .. 86

Figure 26: UDP packet [Stevens94] ... 87

Figure 27: ICMP packet [Stevens94].. 87

Figure 28: Example encoding of a IP and TCP header to form a TCP DNA chromosome

.. 89

Figure 29: Example 240 bit (487-element) TCP Ab chromosome 91

Figure 30: jREMISA applied to Timmis’ AIS abstract model ... 92

Figure 31: jREMISA algorithm flowchart.. 93

Figure 32: Allele selection process for Cauchy Mutation .. 99

Figure 33: jREMISA distributed communication architecture....................................... 102

Figure 34: UDP-broadcast payload structure.. 103

Figure 35: Example XML post-negative selection file... 104

Figure 36: Runtime comparison between REALGO and jREALGO............................. 110

Figure 37: Fitness comparison between REALGO and jREALGO: 450 generations.... 111

Figure 38: Fitness comparison between REALGO and jREALGO: 5000 generations.. 111

xiv

Figure 39: Standard deviation comparison between REALGO and jREALGO: 450

generations ... 112

Figure 40: Standard deviation comparison between REALGO and jREALGO: 5000

generations ... 112

Figure 41: Runtime comparison between MISA vs. jMISA... 113

Figure 42: Statistical runtime comparison between MISA and jMISA.......................... 114

Figure 43: Plotted MISA, jMISA known Pareto Fronts and MISA’s true Pareto Front

.. 115

Figure 44: PFknown vs. PFtrue point Euclidian-distance differential between MISA and

jMISA... 116

Figure 45: MIT-DARPA “1999 week-two insider” attack data set landscape with LL-

labeled attacks .. 118

Figure 46: MIT-DARPA “1999 week-two insider” landscape quantification................ 120

Table 5: Number of generations for each day of the 1999 week-one insider self-only

traffic (filtered for TCP, UDP, ICMP only) ... 121

Figure 47: Negative selection attrition rate in 1,467,775 generations (Friday) with TCP,

UDP and ICMP starting at 4,096 untrained Abs.. 122

Figure 48: Affinity threshold vs. negative selection runtime for TCP, UDP, ICMP = 4096

untrained Abs in 1,467,775 generations (Friday)... 123

Figure 49: Standalone effectiveness against each day of the MIT-DARPA 1999 week-two

insider attack data set (39% affinity threshold).. 126

Figure 50: Post-MOEA secondary population true Pareto Fronts................................. 129

xv

Figure 51: Post-MOEA attack graph.. 131

Figure 52: jREMISA screenshot of a two-system distributed island model execution .. 132

Figure 53: Standalone vs. distributed effectiveness: Thursday 133

Figure 54: Data decomposition: efficiency vs. number of executing jREMISAs 133

Figure 55: Warthog vs. jREMISA: false positive rate vs. number of antibodies 135

Figure 56: Example of ACO given a preponderance of food at the bottom trail............ A-8

Figure 57: Ethereal analysis of the 1999 week-two Monday clean insider data set B-1

Figure 58: jREMISA negative selection menu ... D-5

Figure 59: jREMISA MOEA menu .. D-8

Figure 60: Example post-MOEA XML output file... D-9

Figure 61: JREMISA MIT-DARPA chromosome construction menu......................... D-10

Figure 62: jREMISA KDD Cup 99 chromosome construction menu D-11

Figure 63: jREMISA tcpdump packet operations menu ... D-12

Figure 64: jREMISA file hierarchy .. D-13

Figure 65: jREMISA UML class diagram.. D-16

xvi

List of Tables

Page

Table 1: History of immunology [DCVZ99a] .. 26

Table 2: Coverage of shape-space (C) with required Ab repertoire (N) for differing bit

string lengths (L) and affinity thresholds (ε) with alphabet size k = 2 57

Table 3: Antibody signature design [adapted from HWGL02] .. 89

Table 4: MIT-DARPA “1999 week-two insider” attack analysis 119

Table 6: Post-negative selection analysis of TCP, UDP, ICMP populations starting at

4096 against the Friday self-only data set of 1,467,775 packets.............................. 122

Table 7: MOEA run summary: single jREMISA (highest effectiveness in bold text) ... 125

Table 8: MOEA run summary: distributed jREMISA against Thursday data set (highest

effectiveness in bold text) .. 125

Table 9: KDD Cup 99 data structure [adapted from KDD99].. C-3

xvii

List of Algorithms

Page

Algorithm 1: Bäck’s standard Evolutionary Algorithm [Bäck96].................................... 47

Algorithm 2: Multiobjective Immune System Algorithm (MISA)................................... 64

Algorithm 3: jREMISA pseudocode... 94

Algorithm 4: jREMISA negative selection pseudocode... 94

Algorithm 5: jREMISA fitness function pseudocode... 96

Algorithm 6: jREMISA selection pseudocode ... 101

Algorithm 7: Basic simulated annealing algorithm [MICHALEWICZ04] A-3

Algorithm 8: Basic tabu search algorithm [MICHALEWICZ04] A-4

Algorithm 9: Genetic Algorithm pseudocode... A-6

xviii

List of Equations

Page

Equation 1: Euclidian distance…………………………………………………….…..…40

Equation 2: Manhattan distance………..……………………………………………...…40

Equation 3: Hamming distance…………………………………………………………..41

Equation 4: Antibody coverage level in Hamming shape space………………...…….....56

Equation 5: Number of Antibodies required for full coverage of Hamming shape

 Space………………………………………………………………………...………..56

Equation 6: Yao and Liu test function [Yao97]…………………………………….......110

Equation 7: Kita-proposed function [Kita96]…………………………………………..114

xix

List of Abbreviations

Abbreviation

Ab Antibody

Ag Antigen

ACM Association for Computing Machinery

ACO Ant Colony Optimization

AFIT Air Force Institute of Technology

AFRL Air Force Research Laboratory

AI Artificial Intelligence

AIS Artificial Immune System

ANN Artificial Neural Networks

API Application Programming Interface

BFS Breadth-First Search

BIS Biological Immune System

CCNA Cisco-Certified Network Associate

CDIS Computer Defense Immune System

DARPA Defense Advanced Research Projects Agency

DFS Depth-First Search

DHS U.S. Department of Homeland Security

DoD Department of Defense

DoS Denial-of-Service

GA Genetic Algorithm

xx

GB Gigabyte

GUI Graphical User Interface

EA Evolutionary Algorithm

EC Evolutionary Computation

EP Evolutionary Programming

ES Evolutionary Strategies

HIDS Hybrid IDS

HTTP Hypertext Transfer Protocol

ICARIS International Conference on Artificial Immune Systems

ICMP Internet Control Message Protocol

ICSE International Conference on Software Engineering

ID Intrusion Detection

IDE Integrated Development Environment

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPv4 Internet Protocol, version four

IPS Intrusion Prevention System

JAR Java™ Archive File

JAVADOC Java Documentation

jREMISA Java-based Retrovirus Multiobjective Immune System Algorithm

JVM Java™ Virtual Machine

xxi

KDD Knowledge Discovery in Databases

LIMFAC Limiting Factor

LL Lincoln Laboratory (at MIT)

MISA Multiobjective Immune System Algorithm

MIT Massachusetts Institute of Technology

MOEA Multiobjective Evolutionary Algorithm

MOP Multiobjective Optimization Problem

MVC Model-View-Controller

NIDS Network-based IDS

NP-Complete Non-deterministic Turing Machine Polynomial Time-Complete

OS Operating System

P* Pareto Optimal Set

PDF Portable Document File

PF* Pareto Front

PSO Particle Swarm Optimization

RAM Random Access Memory

REALGO Retrovirus Algorithm

REMISA Retrovirus Multiobjective Immune System Algorithm

RNA Ribonucleic acid

SA Simulated Annealing

SAT Boolean Satisfiability Problem

SLOC Source Lines of Code

xxii

TCP Transmission Control Protocol

TISSEC Transactions on Information and System Security (ACM)

TS Tabu Search

TSP Traveling Salesman Problem

UDP User Datagram Protocol

UML Unified Modeling Language

URL Uniform Resource Locator

VPN Virtual Private Network

XML eXtensible Markup Language

1

AN ARTIFICIAL IMMUNE SYSTEM-INSPIRED MULTIOBJECTIVE

EVOLUTIONARY ALGORITHM WITH APPLICATION TO THE DETECTION
OF DISTRIBUTED COMPUTER NETWORK INTRUSIONS

“The Internet has spawned an entirely new set of criminal activity
that targets computer networks themselves. Included in this
category are such crimes as hacking, releasing viruses, and
shutting down computers by flooding them with unwanted
information (so-called "denial of service" attacks). Our
vulnerability to – and the damages caused by – this type of crime
are astonishingly high.”

Michael Chertoff, Assistant Attorney General, Criminal Division,
U.S. Department of Justice – brief to the Subcommittee on Crime,
Committee on the Judiciary, U.S. House of Representatives, June
12, 2001 [Chertoff01]

I. Introduction

An intrusion detection system (IDS) is a software or hardware device that

monitors the events occurring in a computer system or network, analyzing them for

patterns of abnormality indicative of a security breach [NIST01]. Signature-based IDSs

are naturally reactive and storage-limited. Their operation depends upon experts catching

an instance of an intrusion or virus after the potentially successful attack has done its

damage, performing post-mortem analysis on that instance, encoding it into an anomaly

signature and then storing that signature in its anomaly database. The time required to

perform these tasks provides a window of vulnerability to Department of Defense (DoD)

automated information systems. Further, because of the current maximum size of an

Internet Protocol-based message, the database would have to be able to maintain 25665535

possible signature combinations. To best mitigate this vulnerability and limitation, this

2

thesis presents a proof-of-concept Artificial Immune System (AIS)-inspired Multiobjective

Evolutionary Algorithm (MOEA) intended to measure the vector of tradeoff solution

points among detectors with regard to two independent objectives: best classification

fitness and optimal hypervolume size.

Modeled in the spirit of the human biological immune system and intended to

augment DoD network defense systems, our algorithm generates network traffic detectors

that are dispersed throughout the bounded network enclave. These detectors

promiscuously monitor network traffic for exact and variant abnormal system events,

based only the detector’s own data structure and a truth set, and respond heuristically.

This research investigates the feasibility of employing such an algorithm in a distributed

computing environment to determine if this approach to intrusion detection and

classification is more accurate than the single-objective approach.

1.1 Problem Motivation

Signature-based IDSs detect attacks by discovering exact matches between

incoming data and a database of known attack string signatures. This reactive nature

allows unknown attacks to be successful before the attack signature is defined and stored

in the IDS database. In addition, an IDS level of coverage is limited to the resources of

the underlying hardware; 25665535 possible harmful signatures cannot be stored. Further

compounding these constraints, the more storage allotted for signatures, the greater the

time required by the algorithm to detect and classify incoming network traffic. These

high-level constraints barely skim the surface issues of the intrusion detection (ID)

problem domain. Bace and Mell define ID as, “the process of monitoring the events

3

occurring in a computer system or network and analyzing them for signs of intrusions,

defined as attempts to compromise the confidentiality, integrity, availability, or to bypass

the security mechanisms of a computer or network” [NIST01]. Reactively performing ID

in this manner guarantees two outcomes: high probability of success by every unknown

attack and an attack signature database growing beyond the ability of containment.

Therefore, we look toward a proactive algorithm with the potential to effectively

classify first-time intrusion encounters without the requirement for an a priori database of

intrusion signatures. Developing proactive network defense systems is an open and rarely

explored problem. One ID domain algorithm currently being researched is the AIS.

Conceived in 1986 [Farmer86], the AIS is inspired by and modeled after the human

biological immune system (BIS) for its ability to provide the body the highest degree of

protection from invading organisms. Many properties of the BIS are of a growing interest

to computer scientists and engineer, particularly those involved in computer security, for

the following reasons [DCVZ99]:

1. UNIQUENESS. Each individual possesses its own IS, with its own capabilities

and vulnerabilities;

2. FOREIGNER RECOGNITION. The harmful non-self molecules not native to the

body are recognized and eliminated by the IS;

3. ANOMALY DETECTION. The BIS can detect and react to pathogens never

before encountered by the body;

4. DISTRIBUTED DETECTION. BIS cells are distributed throughout the body,

operating autonomously (no centralized control);

4

5. IMPERFECT DETECTION (noise tolerance). Exact pattern recognition of

pathogens is not required, allowing for variant detection;

6. REINFORCED LEARNING AND MEMORY. Upon disposition of a new

pathogen, future encounters are responded to more efficiently and effectively.

Translating these BIS properties into AIS features provides the following benefits for our

algorithm:

1. AISs ARE NATURALLY REACTIVE. Signature-based IDSs allow previously

unknown nefarious packets to enter and compromise the network because their

signature was not in the database. On the other hand, an AIS, which detects

abnormal traffic based only on known normal traffic patterns, has the potential to

detect, classify and neutralize a newfound intrusion from entering the network

(which can be argued as a potential cure to the Zero-Day Attack—an attack

occurring on the same day or before a defense is created [Porter06]);

2. AN AIS HAS THE ABILITY TO DETECT BOTH EXACT AND VARIANT

ANOMALY SIGNATURES. Signature-based IDSs require an exact pattern

match, allowing mutated variants of that anomaly into the network. An AIS,

conversely, seeks both exact and variant patterns of anomalous traffic, based on a

user-defined threshold. When anomalous traffic is confirmed, the detector’s data

structure slightly changes to include knowledge of this newfound anomaly’s

structure;

3. AN AIS DOESN’T REQUIRE AN A PRIORI DATABASE OF KNOWN

ATTACK SIGNATURES. Rather, an AIS generates a manageable-sized

5

population of detectors that are initially trained through exposure to known

normal traffic and then released to seek network event patterns that do not match

such traffic. By having the detector retain the knowledge of newly discovered

anomalies dismisses the need for a database of infinite growth size.

However, AISs also have limitations, which should be considered in choosing its

application domain. De Castro, classifying the AIS within “nature-inspired computing,”

cites nature-inspired computing as [Castro05]:

1. having difficulty in analyzing convergence criteria and optimality of solutions;

2. sometimes not scalable;

3. sometimes inefficient.

Because of today’s exponential proliferation of new and mutated malicious

signatures, serially-executed algorithms and deterministic string matching are becoming

less efficient, allowing for certain strings to escape into the system. The Symantec

Internet Security Threat Report for the first half of 2004 reports alarming growth rates in

malicious signatures in that timeframe’s last three years; particularly with regard to

viruses, worms1 and bots2 [Symantec04].

1 A computer worm is a self-replicating computer program that sends copies of itself to other computers
while executing itself, without user intervention. Unlike viruses, they do not attach to computer files. There
are several worm classifications, including instant messaging, file-sharing network and Internet worms
[Worm07].
2 Bots, short for “robots,” are programs that are covertly installed on a user’s machine in order to allow an
unauthorized user to control the computer remotely. Bots are used for a wide variety of malicious purposes,
such as information theft, stealing application serial numbers, or stealing user passwords. They also
facilitate distributed denial-of-service attacks [Symantec04].

6

Figure 1 shows the exponential growth trend of reported virus and worm signatures while

Figure 2 justifies the popularity of signature variants, as equally exponential proliferators.

Figure 1: Virus and worm growth trend: Jan 01 – Jun 04 [Symantec04]

Figure 2: Bot variant growth trend: Jan 03 – Jun 04 [Symantec04]

Symantec’s most recent report, which covers the first half of 2006, reports a

continued upward trend in malicious activities, i.e., denial-of-service (DoS) attacks

7

(Figure 3), and new vulnerabilities (Figure 4), maintaining consistency with their 2004

report [Symantec06]. In Figure 4, Symantec comments that the number of vulnerabilities

documented in this reporting period is higher than in any other previous six-month period

since it began tracking in January of 2002.

Figure 3: Denial-of-Service attack trend, January-June 2006 [Symantec06]

Figure 4: New vulnerabilities trend, January-June 2006 [Symantec06]

8

1.2 Research Focus

Computer systems are dynamic, with continually changing patterns of behavior,

such as management of software applications and users, and continually changing

configurations and security policies [HF00]. These and other changes allow intruders to

chart methods of gaining improper system access. Traditional computer security

mechanisms are mostly static, unable to easily cope with the ever-changing environment.

Thus, an adaptive system is needed to track both changes in the environment and the way

in which intruders and viruses exploit computer systems. The AIS is the algorithm of

choice because the architecture of an IDS is similar to the BIS—a parallel and distributed

adaptive system [CC05]. The BIS utilizes volatile memory and is capable of learning and

retrieval of information from such memory in recognition and classification tasks.

Specifically, it learns to recognize present and past patterns and its global and dynamic

behavior impacts many local interactions. These BIS features, in turn, provide robustness,

fault tolerance, adaptability and dynamism, which researchers are attracted to emulate.

With regard to the algorithm, the multiobjective context is preferred to the single-

objective because reality dictates the ID problem has additional objectives, such as

efficiency, effective shaping of the detector for complete search space coverage and

measuring individual false detection rates of individual attacks.

1.2.1 Problem Domain Scope

The ID problem domain is too large for only one algorithm’s application. It

ranges from network-based sniffer systems, responsible for Enterprise-wide coverage, to

individual host-based sensors that monitor the activity and usage patterns of a single

9

system on the network. The algorithm derived from this research addresses ID on the

scale of a notional Air Force Base [Mahoney03], defined by the data set, introduced in

Section 5.3.

A sub-problem of this domain is the maximization of the inspection coverage of

all incoming packets. Ideally, the algorithm should inspect all incoming packets.

However, the search space for the current version of the Internet Protocol (IPv4) payload

content is a massive 25665535 possible strings—too many to search either by deterministic

or stochastic means [Williams01, Warthog01]. Hence, our inspection method must be

narrowly and heuristically focused to those areas of the search space most profitable to

malicious code. For example, there exist only few places within a network traffic packet

that facilitate delivery of executable attacks.

One other area of concern is the detection of variants (mutations) of nefarious

strings. Slight mutations of existing strings may illicitly enter the system just as easily as

a new string could, due to exact signature matching rules. Consequently, a new signature

string must be crafted and stored in the database for every possible combinatoric

mutation of the known attack string. This introduces storage overhead that could prevent

a newly discovered attack signature from being stored. AISs require no more storage

space to detect variants than exact pattern matches, depending on the defined matching

threshold. However, the risk to variant matching is the possibility of declaring a known

event as anomalous. Hence, detectors require constant maintenance in terms of mutating

their location and shape to best mitigate fratricide.

10

1.2.2 Approach

This research advances the existing work of two AIS-motivated evolutionary

algorithms (EA) applied to the ID problem. These algorithms possess exclusive strengths

that we conjecture could be extracted and combined into one algorithm, for synergistic

effectiveness. Upon successful translation of each algorithm’s native C programming

language to Java, and their subsequent integration into a single Java-based algorithm, this

new algorithm is extended to independently execute in a distributed island model

environment of computers, having the ability to evaluate a data set in a data-

decomposition manner [GGKK03]. Whether executed as standalone or distributed, our

algorithm is then provided ID data set input for experimental validation. While this

algorithm is intended to augment an IDS, the scope of this research allows for only

validating such an algorithm’s proof-of-concept and execution.

1.3 Research Hypothesis

It is our hypothesis of this research that a “useful” AIS-inspired MOEA can be

developed, achieving two independent objectives with regard to detectors:

1. best classification fitness of normal and abnormal traffic;

2. optimal hypervolume size.

The term “useful,” in this hypothesis, is defined by Garrett in his search for how to

evaluate an AIS [Garrett05]. Usefulness criteria is based on how distinct and effective a

computational method is. If distinctive, it possesses unique symbols or methods that can

be transformed to become the same as another method but that its symbols, expressions

and processes, as a whole, cannot be made equivalent by another. Effectiveness implies

11

the accuracy level of obtained solutions in the effort to reach a desired result, or effect,

while efficiency stresses minimal computational effort (i.e., time) and resource

consumption (i.e., space) by the algorithm [CVL02]. If effective, the AIS must provide a

unique means of obtaining a set of solutions, provide better results than other existing

methods in a shared benchmark test, or provide more expedient results than other

methods in a shared benchmark test.

Through multiobjectivity, a set of globally minimized solutions, rather than a

single solution, should provide a greater range of options to network administrators in

choosing detectors to employ in future ID applications.

Objectives

Our hypothesis validity is based on a set of quantitatively and qualitatively

measurable goals, which is, in turn, based on the outcome of our set of experiments.

Given this, our hypothesis goals are:

1. VALIDATE THE MIGRATION OF EXISTING C-BASED AIS

ALGORITHMS INTO THEIR JAVA-BASED EQUIVALENTS. Due to the

Java programming language’s growing ubiquity [Java04], we decide to continue

the work of two existing, C-language AIS algorithms in the Java programming

language. Once accomplished, output effectiveness of the Java-based algorithm

should mirror that of its C parent. If it does, we have laid the foundation to

continue their validated work;

2. ATTAIN THE HIGHEST CORRECT CLASSIFICATION RATE

POSSIBLE FOR THIS PROOF-OF-CONCEPT ALGORITHM. This

12

objective seeks the highest detection and classification effectiveness rate of

detectors. This methodology can generate two types of errors: false-positives

(referred to as Type-I) or false-negatives (referred to as Type-II) errors. False

positives are declared conditions or findings that do not exist, such as indicating a

normal event as abnormal. Classifying normal as abnormal is synonymous to the

BIS side-effect of autoimmunity, where the BIS attacks and kills its own cells—a

result of improperly trained detectors (see Section 2.2.1). False negatives are

failures to recognize a condition that existed, such as declaring an abnormal event

as normal. This results in unrecognized and uninhibited harm in a system. The

higher the effectiveness of a detector, the lower this objective’s score. Higher

scores resulting from false detections are heuristically determined based on the

type and intensity of the detector’s error; hence, we desire the lowest overall score

possible for the detector population which translates into its highest effectiveness;

3. IDENTIFY A KNOWN OPTIMAL DETECTOR HYPERVOLUME. This

objective seeks the optimal hypervolume (i.e., size or affinity threshold) of

detectors. Research has shown that detector effectiveness is impacted by detector

size [McGee07] (and shape [Shapiro05, BDNG06]). Detector size, should not be

too high as to react to normal traffic and not too low as to not react to abnormal

traffic [Middlemiss06, McGee07]. Hence, in addition to classification fitness, we

also desire a detector size deviation value as close to zero as possible;

4. VALIDATE AIS COOPERATIVE COMMUNICATION WITHIN A

DISTRIBUTED ENVIRONMENT. The components that compose the BIS are

13

distributed, operate autonomously and cooperatively communicate; hence, it

should be modeled as such. As AIS detectors are rewarded for correct

classification and detection, the AIS subsequently broadcasts its fittest detectors

to all listening AISs, for inclusion consideration into their population. Validation

of this objective involves three observable steps:

a. verification the fittest detectors are broadcast to the subnet;

b. acknowledgement from listening recipients;

c. insertion or rejection of that detector into the AISs exclusive population of

fittest detectors.

1.4 Benchmarks of Validation

As Figure 1 and Figure 2 illustrate, nefarious computer traffic is exponentially on

the rise, Figure 2 further illuminates the disturbing truth that some of this traffic is meant

to travel and execute covertly. Hence, we desire benchmarks and experiments that

measure not only overall success levels but also the effectiveness of detecting individual

attacks, for the sake of maximizing our level of network security.

Our hypothesis objectives are measured in the following manner:

1. FIRST OBJECTIVE: Our first objective is measured by the range of results

equality between the existent C algorithms’ output and their Java-translated

equivalent;

2. SECOND OBJECTIVE: As our algorithm is intended to be executed within a

dynamic and distributed network, we require a pre-defined data set that simulates

this activity. Our chosen real-world data set, containing both normal and

14

abnormal traffic, includes a supplementary truth set detailing the location and

duration of abnormal traffic (see Appendix B). By comparing true and false

positives and negatives, plotting the classification of each identified attack and

using multiobjective graphing tools, we can measure our success level;

3. THIRD OBJECTIVE: This research found no current studies of optimal affinity

threshold value. In Chapter 5 experimentation, an optimally known affinity

threshold value is empirically derived based on post-execution effectiveness of

the data set. Consequently, we desire post-execution detectors that deviate as little

as possible from this value. Hence, this objective seeks individual detector affinity

threshold deviation, from the empirically-derived value, as close to zero as

possible;

4. FOURTH OBJECTIVE: The fourth objective is determined through observation

of multiple AISs communicating to each other in the protocol specified in this

objective’s definition, above.

1.5 Thesis Overview

This chapter provides the problem motivation and meta-level approach behind

solving it. Chapter 2 provides the background insight into understanding the basic

concepts involved in the scope of this research. Chapters 3 and 4 detail the high-level

design methodology and low-level design implementation employed in achieving our

hypothesis. Chapter 5 presents the experimental analysis of our constructed algorithm,

concluded by the Chapter 6 summary of research impact and future direction of this

work.

15

II. Literature Review

The first step in validating our hypothesis is having an understanding of ID: the

history behind it, the lessons learned of past endeavors in solving its problem domain and

considering which avenues of current research appear most fruitful in pursuing. This

chapter introduces the history and fundamental concepts of anomaly detection, search and

evolutionary algorithms, the BIS and solving multiobjective problems to help the reader

understand the background behind developing an AIS-inspired MOEA. Section 2.1

introduces the impetus of our algorithm design—the intrusion detection system, with its

strengths and weaknesses. Section 2.2 reviews the structure and execution of the BIS that

an AIS attempts to computationally model. Section 2.3 reviews the history and advances

of the AIS, to date. Section 2.4 discusses the search algorithms applied to anomaly

detection. Section 2.5 explains the need for a multiobjective search algorithm over a

single-objective. Section 2.6 contrasts the single-objective from multiobjective

optimization, with Section 2.7 explaining how to measure multiobjective results.

2.1 The Intrusion Detection System

IDSs are designed to monitor activities on a network and recognize anomalies that

may characterize misuse or malicious activity in the form of exact pattern matching and

statistical analysis [Chen04]. This recognition idea can be traced back to an early host-

based IDS prototype called the Intrusion Detection Expert System (IDES) by James

Anderson [Anderson80] and sponsored by the U.S. Navy in the mid-1980s [Navy80]. An

IDS consists of three components: monitor, analyzer and responder. Data is collected by

16

monitoring activities in the host or network. When a suspect event meets a user-defined

threshold, a response is triggered. ID approaches can be classified according to

monitoring location as host-based, network-based, or hybrid. IDS are further classified by

their data analysis approach as being either signature- or anomaly-based detection

systems.

2.1.1 IDS Topologies

Before the advent of internal corporate networks’ connection to the public

Internet, the first-generation IDS was host-based; meaning that an IDS was attached to

and monitored a single computer. Subsequently, network-based IDS, executed from a

computer connected to a switch or router, are responsible for the monitoring of all

passing network traffic. The topology chosen, whether host-, network-based or a hybrid

thereof, is driven by the network size and partition(s).

Host-based IDS

Host-based IDSs operate on information collected from within an individual

computer system. From this vantage point, the IDS can effectively monitor all system

activities, observe the outcome of abnormal activity, and execute real-time measured

response. They normally rely on two system information sources: the operating system

audit trails and system message logs. These data are taken together, commensurate with

the IDSs own data, to provide reports to the system administrator. Advantages of a host-

based IDS include:

1. their locality to the system they are installed on enables their ability to detect

certain attacks not able to be seen by a network-based IDS;

17

2. not being hindered by encrypted network traffic as all data is unencrypted before

transmission and post-arrival;

3. unaffected by switched networks;

4. their operation on local operating system audit trails helps detect Trojan Horses3

or other software integrity breach-type attacks.

Disadvantages of a host-based IDS include:

1. their local scope of responsibility prevents their monitoring of network activity

(e.g., malicious network scans or surveillance);

2. configuration management-prohibitive, as every IDS installed on an individual

workstation or server must be individually managed;

3. susceptible to certain DoS and unmonitored internal or external-threat attacks,

allowing for unreported disabling of the IDS;

4. the size of the audit trail utilized by the IDS (i.e., the larger the trail, the more data

an IDS has to make informed decisions about authorized activities) is proportional

to the amount of space required of the individual computer;

5. local operating system resources are required, thus inflicting a performance cost

on a monitored system.

3 A Trojan Horse portrays itself as something other than what it is at the point of execution. It neither
replicates nor copies itself, but causes damage or compromises the security of the computer. The malicious
functionality of a Trojan Horse may be anything undesirable for a computer user, including data
destruction or compromising a system by providing a means for another computer to gain access, thus
bypassing normal access controls, http://www.symantec.com/avcenter/refa.html#t.

18

Network-based IDS

In the interest of centralized management and clandestine IDS sensor (or host)

placement, the majority of commercial IDS matured to network-based IDSs (NIDS).

NIDS detect attacks by analyzing network packet traffic along a network segment or

switch, enabling the monitoring and protection of multiple hosts by a single sensor. NIDS

consist of a set of single-purpose sensors placed at multiple, distributed points in the

network. The sensor’s purpose is to monitor and perform analysis of network packet

traffic and report attacks back to the central management agent. These sensors may

operate in passive stealth (promiscuous) mode in order to make it more difficult for the

attacker to specifically seek and identify them. Advantages of NIDS include:

1. a strategically placed few sensors can monitor a relatively large network of hosts;

2. deployment of network-based sensors does not interrupt individual host operation

or network communication;

3. ability to be made secure against attack and invisible against detection.

Disadvantages of NIDS include:

1. the volume of network traffic is inversely proportional to the percentage amount

of traffic the IDS is able to analyze for anomalies. At peak times of network

usage, the IDS may become saturated and unable to inspect all packets,

potentially missing a virus or intrusion-related attack packet;

2. increasing the efficiency of packet inspection (in an effort to make contact with

all packets) forces vendors to use fewer resources, resulting in the detection of

fewer attacks (lowered effectiveness);

19

3. cannot inspect encrypted packets. This problem may require the ability (and

computational overhead) of integrating (versus bypassing) encryption inspection

capability, as more companies move toward virtual private networks (VPN);

4. cannot conclude whether or not an attack was successful; only whether or not an

attack was present. The human network administrator must conclude the level of

success;

5. susceptible to instability and crash due to the inability to handle malformed or

fragmented packets, accidental or malicious;

6. many advantages of network-based IDSs don’t apply to modern-day switches due

to the switch’s inability to provide universal port monitoring. This limits the IDS

to monitoring a single host. And even with such capability, a single port to a host

does not provide a mirror to all ports’ traffic.

Hybrid IDS

 Referred to by some vendors as, “an IDS that fills more than one role” and “host-

based intrusion prevention system (IPS),” hybrid IDS (HIDS) combine the functionality

of a host-based IDS and NIDS into one package [SF07]. It binds closely to the OS kernel

and services, monitoring and intercepting system calls to the kernel or APIs in order to

prevent and log attacks [NSS07]. This topology arose in response to modern switches

preventing all switch traffic from being visible to a single host and NIDS tendency to

drop packets on high-speed networks. Advantages of HIDS include:

1. effective blocking of attacks against an individual host and its application level;

2. ability to work online with encrypted networks [WS07].

20

Disadvantages of hybrid IDS include:

1. future OS upgrades could cause problems, based on the OS binding [NSS07];

2. required to be deployed to every host [LJ07].

2.1.2 Signature and Anomaly Detection Methods

IDSs make the distinction between malicious and non-malicious packet traffic

based on either a signature (signal) or anomaly (noise)-based configuration to properly

identify malicious traffic patterns. In signature-based detection the IDS targets a packet

known to be anomalous, is the technique most used by commercial systems. In anomaly

detection the IDS hunts for patterns, or signature fragments, of known anomalous packets

is the subject of this research. While there are strengths and weaknesses to both, most

implementations use a hybrid approach where the preponderance of analysis is signature-

based.

Signature-based detection

By definition, signature (or misuse) detectors look for events that exactly match a

pre-defined pattern or signature that describe a known attack or intrusion. These pre-

defined (known) signatures are maintained in a database that the detector references.

Hence, the effectiveness of the detector is limited to the number of signatures stored.

Sophisticated improvements to this method of detection involve leveraging a single

signature to detect sets of attacks. Advantages of signature-based detection include:

1. exact pattern matching (vs. anomaly-based) has the potential for the fewest

number of false positives (alarms) and, thus, provides the most effective diagnosis

as to the specific attack or technique;

21

2. accurately provides system administrators (of any level of experience) an efficient

way to track security problems, enabling them to prioritize their specific security

measures.

Disadvantages of signature-based detection include:

1. exact pattern matching restricts detection to only those exact signatures. Hence,

the signature repository must be continually updated;

2. detecting tightly-defined signatures prevents the detection of even slight variants

of that defined signature.

Anomaly-based detection

Anomaly detectors are paradoxically different from signature-based in that, by

definition, analyze known good (or self) traffic over a period of time versus being

provided a database of known malicious (or non-self) signatures in order to effectively

profile anomalous activity within a network. These profiles represent the normal behavior

of human users, computer hosts, and network traffic. In this way, incoming data is

analyzed to determine if its signature or a variant of deviates from a pre-established norm

or exceeds a threshold. This is the method of detection this research focuses on

improving. Measures and techniques involved in anomaly detection include:

1. THRESHOLD DETECTION. Certain quantitative attributes of user or system

activity are recorded as counts with a pre-defined threshold of what is considered

acceptable (normal) behavior. Counts can record, e.g., number of file accesses,

failed login attempts, CPU utilization by a specific process. This can be a fixed or

heuristically updated number;

22

2. STATISTICAL MEASUREMENT. Includes both parametric, where the

distribution of the profile attributes meets a particular threshold; or non-

parametric, where the distributed of such attributes is heuristically learned, over

time;

3. RULE-BASED MEASURES. Similar to non-parametric statistical measures in

that observed activity defines acceptable usage patterns but differs in that these

patterns are rule-based versus numeric thresholds;

4. OTHER MEASURES. Today’s research involves artificial neural networks,

genetic algorithms (GA), and computational BIS models. Our research involving

MOEAs and AISs applies to this area.

Unfortunately, as opposed to signature-based pattern matching, anomaly-based

can produce a large number of false positives, as human and computer behavior can be

unpredictable. However, conversely, pattern-based matching has the ability of detecting

unknown variants that may not have otherwise been detected by signature-based IDSs. In

addition, because anomaly-based IDSs identify based on threshold, they require human

confirmation of their discovery before reacting—a process called co-stimulation.

Interestingly, anomaly-based detectors can generate heuristic outputs and signatures,

based on its discoveries, which can be used by signature-based IDSs to strengthen their

effectiveness. This is one impetus for hybridizing IDS implementations. Advantages of

anomaly-based detection include the ability to:

1. detect unusual network behavior without specific or exact knowledge of the attack

or signature;

23

2. automate the process to produce information to augment signature-based IDSs,

saving human operator time and resources.

Disadvantages of anomaly-based detection include:

1. requires an initial learning curve: initialization within a typically sanitized (all

self) network to train self detectors to discriminate between self and non-self

network traffic;

2. always a greater probability of false detections over the signature-based method;

3. provides only an approximate solution whereas signature-based ensures exact

matching.

2.2 The Human Biological Immune System (BIS)

The human biological immune system (BIS) is respected as a highly evolved,

decentralized, robust system, charged with providing the human body with the highest

degree of protection against various invading organisms (e.g., bacteria, viruses and

parasites)—both internal and external to the body [Greensmith03]. It combats

dysfunction from a body’s own cells and tissues, known as infectious self, and the action

of exogenous (outside-body) infectious microorganisms known as infectious non-self

[DCVZ99a]. Collectively, these non-self invaders are formally referred to as pathogens.

The non-self pathogen identified in computational circles is commonly referred to as the

Antigen (Ag), defined as any molecule recognized by the BIS [Timmis02]. Protection

against Ags is achieved through the orchestrated execution of many BIS components,

with the most prominent being Antibody (Ab) or self detectors. The BIS performs its duty

24

through recognition and removal of the Ag from the body based on a complimentary

matching between an Ab and the Ag, as depicted in Figure 5.

Figure 5: Example of Ab-Ag complimentary matching [adapted from Timmis04]

Without the BIS, death of the body from infection would surely result. Hence, the

BIS cells and molecules must maintain constant surveillance for non-self organisms.

When a pathogen is detected for the first time, it is not only eliminated but its pattern, or

signature, is retained in BIS memory so that repeated exposures to the same or variant

pathogen are prosecuted more efficiently.

In medicinal history, immunology is a relative new biological science. Its origin is

traced back to west-England country doctor Edward Jenner who, in 1796, discovered that

human inoculation with the related cow-pox virus built immunity against the deadly

scourge of smallpox—a frequently lethal disease. Jenner named this process

vaccination—the inoculation of healthy individuals with weakened or non-lethal samples

of disease-causing agents aiming at educating and consequently strengthening BIS

defenses against these specific agents.

Later in the 19th century, following on Jenner’s discovery, doctor Robert Koch

proved that infectious diseases were caused by pathogenic organisms, each producing its

25

own infection or pathology. This validation led to the classification into categories of

disease-causing organisms called pathogens. Jenner and Koch’s discoveries, taken

together, formed the basis of the science of immunology. In the 1880s, Louis Pasteur

used this knowledge to develop the second vaccine used against chickenpox. He called

his inoculation an antirage. During this same period, Elie Metchnikoff discovered

phagocytosis and other cellular components, helping define the BIS architecture.

In 1890, Emil von Behring and Shibasaburo Kitasato made the critical discovery

that the serum within inoculations contained agents called Abs that bind to infectious

agents including Ags and explosively reproduce after exposure to the Ag. At the same

time, Paul Ehrlich formulated the side-chain theory which conjectured the surfaces of

white blood cells, such as B-cells, are covered with several side-chains, or receptors.

These receptors form chemical links with the complementary links of encountered Ags,

allowing for Ab-Ag binding. In the 1950s, McFarlane Burnet proposed the clonal

selection theory or clonal selection principle to help explain the widely disputed

circumstances around Ab formation and reproduction [Burnet50], further detailed in

Section 2.5.2. An unexplained corollary to Ab reproduction is the possibility of Abs

reacting to (destroying) self-antigens, which would weaken the BIS. In 1971, Niels K.

Jerne argued that the elimination of self-reactive cells would constitute a negative

selection mechanism—a method for eliminating Abs which react to self.

In the last few years, most biological immunology is focused on apoptosis,

antigen presentation, cytokines, immune regulation, memory, autoimmune diseases,

26

DNA vaccines, and maturation of the immune response [DCVZ99a]. Table 1 summarizes

the research explained in this section.

Table 1: History of immunology [DCVZ99a]

The organs and tissues that compose the BIS are distributed throughout the body

and known as lymphoid organs once they begin production, growth, and maturity of

lymphocytes—the leukocytes that represent the primary BIS operator through recognition

and elimination of pathogens. Lymphocytes are composed of two types of cells:

1. B lymphocyte (B-Cell): their main function being the production and secretion of

Abs as a response to exogenous proteins (i.e., bacteria and viruses). Each B-cell is

programmed to produce a specific receptor-arranged Ab—a property named

specificity. The successful binding of this B-cell protein to another protein is the

signal to other cells that the bound protein must be destroyed;

27

2. T lymphocyte (T-Cell): named for their maturation within the thymus [Dreher95],

they regulate the actions of other cells (i.e., B-cells) and attack host-infected cells.

Lymphocytes become stimulated after an Ag-related interaction, leading to their

activation and proliferation. Each lymphoid organ (Figure 6) has a specific defense

function. Our area of research is limited to only a few of these organs:

1. bone marrow: the soft tissue within the inside part of the longest human bones,

responsible for immune cell generation;

2. lymph nodes: act as filters, with an internal honeycomb of connected tissue filled

with lymphocytes, where each node stores immune cells, including B and T cells

(and where adaptive immune response occurs);

3. thymus: place where few cells migrate to, from the bone marrow, where they

reproduce and mature into T cells, capable of producing an immune response.

Figure 6: Biological Immune System anatomy (lymphoid organs)

28

The BIS architecture is a distributed, multi-layered defense system without need

of centralized control. The three layers of protection are divided as follows, in Figure 7

[Janeway97; Rensberger96, Hofmeyr00]:

1. physical barrier (skin): our skin is the firewall that protects the body from outside

invaders, nefarious or otherwise. The respiratory system helps in Ag eradication.

Its defenses consist of trapping irritants in nasal hairs and mucus, ejecting them

through the act of coughing and sneezing. Overall, it is able to stop some

pathogens from entering, however some are able to illicitly enter and confront the

second barrier;

2. biochemical barriers: bodily fluids, including saliva and tears, contain enzymes

that destroy these irritants. Further, stomach acid and temperature kills most

microorganisms ingested in food and liquids. These are examples of living

conditions that most microorganisms cannot survive in;

3. innate and adaptive immune system [Timmis02]: There are two inter-related

systems responsible for identifying foreign material within the body. Their

functions are described in the next two sections.

29

Figure 7: BIS multi-layer defense structure

The Innate Immune System

The innate BIS is the first line of defense against known microorganisms. This

means it does not have to first learn about these invaders because such microorganisms

are known about at BIS birth. Hence, such internal pathogens are immediately

eliminated, ensuring survival at such an immature stage in life. While performing

separate functions from the adaptive BIS, the innate BIS is critical in initializing and

controlling the adaptive response by controlling/eliminating infection at its level before

reaching the adaptive level. Further, the innate BIS plays a role in distinguishing between

the self and non-self and ensures that microorganism structures it recognizes are distinct

from the self-antigens in order to prevent attacking self. The innate BIS can be

computationally equated to a basic IDS coupled with a complementary database of

known pathogenic (i.e., virus) strings. This half of the IS is not modeled within an AIS

(or our algorithm) but is recommended, in Section 6.2.1.

30

The Adaptive Immune System

All living beings possess a level of resistance to pathogens. The level of resistance

is dependent upon the type of organism. If the pathogen is not eliminated by the innate

BIS, it then faces the adaptive BIS. The function of the adaptive BIS is two-fold: defeat

the pathogen and adapt to its structure so it and any variants may be more efficiently

prosecuted in future encounters by lymphocytes—the most important cells of the

adaptive BIS. This is computationally equivalent to an IDS without a database of known

non-self strings scanning for abnormal activity and adding discovered non-self strings to a

database. Each newly produced lymphocyte (called naïve lymphocytes for their lack of

involvement in an immune response) carries a structure of Ag receptors of a single

specificity. The arrangement of this specificity is determined during lymphocyte

development in the bone marrow and thymus; hence, the chosen structure is combinatoric

and specific only to a single Ag. The core of the adaptive immune response is explained

by the clonal selection theory, introduced in section 2.2.2.

2.2.1 Pattern Recognition, Positive Selection and Negative Selection

Pattern recognition is one of the most important functions of the BIS and is made

possible by the Ag-recognizing surface receptor molecules of both the B- and T-cells.

Immune recognition occurs at the molecular level and is based on the complementarity

between the binding region of the Ab receptor, called the paratope, and a portion of the

Ag called the epitope [Timmis02] (Figure 8). While Abs only have a single receptor

(specificity) for which to bind to other proteins, Ags have several distinct,

complementary epitopes, meaning that different Abs can recognize a single Ag.

31

Figure 8: Antigen binding by multiple antibodies

Distinction between what is self and non-self, which is unknown a priori, is

determined by an Ab’s immunologic idiotopes—epitopes that can be recognized by the

Ag binding sites on other Abs. Hence, where Abs bind strongest to Ags of

complementary epitope arrangement, an Ab can potentially identify another Ab if their

receptor arrangement matches. If the BIS cannot perform this distinction, it may be

triggered against self, causing autoimmune diseases. Conversely, not responding to non-

self introduces an unacceptable level of tolerance. To solve this self-non-self

discrimination problem, the BIS performs positive selection and negative selection.

Positive Selection

Positive selection ensures the “rescue from cell death” of lymphocytes effective in

the Ag recognition process by removing those lymphocytes with ineffective or

unproductive receptors [Timmis02]. Hence, Abs producing false detections are

eventually removed, allowing the effective Abs the space to survive and clone. This

maintains a strong, controlled-size repertoire (population).

Negative Selection

Negative selection works to prevent lymphocyte fratricide by removing those

lymphocytes bearing anti-self receptors. Such lymphocytes become self-reactive and

32

attack self, potentially resulting in an autoimmune disease. To combat this, the BIS

purges the lymphocyte from the repertoire through a lymphocyte-antigen interaction that

results in the death (anergy) of that lymphocyte [Timmis02]. Put another way, an Ab that

attacks self, believing it has detected non-self, is attacking its own system and must be

removed as quickly as possible.

2.2.2 Clonal Selection Theory

In 1959, McFarlane Burnet proposed the selective theory that remains

scientifically unchallenged as to the most plausible reason for the actions of the adaptive

BIS [Burnet50]. The crux of McFarlane’s conjecture is that the existence of many cells

can produce differing Abs of distinct specificity and similar receptor arrangement as its

parent cell. Figure 9 visualizes the Clonal Selection Theory (or Clonal Selection

Principle) during execution. After an Ab binds to an Ag of complementary receptor

arrangement (I), accessory (nearby) cells provide a second signal (or co-stimulatory

signal) to allow the Ag to stimulate the Ab. This stimulation causes the Ab to activate

and proliferate itself (II) as a clone—a cell or set of plasma or effector cells (that define

the clone size) that are the progeny of the parent cell (III). Further, the B-cell Abs can

further differentiate into long-lived B-memory cells (which cannot manufacture Abs)

(IV). This initial contact between an Ab and Ag is called primary response. Based upon

this clonal selection theory, the lymphocytes undergo a process similar to Darwin’s

(1859) natural selection.

The mutational and selectional events in the B-cell clonal selection process allow

lymphocytes to add to their collection (repertoire) of known non-self and increase the Ab-

33

Ag affinity, thus increasing the scope and response time in which known Ags are

recognized. Affinity is defined as the strength of binding between the Ab receptors and

Ag epitopes. Repeated contact with Ags among Abs that matured from the primary

response allow Abs to prosecute Ags and their possible variants more efficiently and

effectively, in future encounters. This is known as the secondary response [Timmis02].

(I)

(II)

(III)

(IV)

Figure 9: The Clonal Selection Principle

Immune Learning and Memory

Recognition of Ags is not enough; the BIS must have sufficient resources (i.e.,

storage) to remember future encounters with new Ags, in order to sustain protection of

the body. In the BIS, learning involves raising the population size and the affinity of

those lymphocytes proven effective at recognizing Ags. In handling storage constraints,

increases the number of some clones may mean the decrease (forgetting) of others.

However, this does not mean the number of lymphocytes has to remain a constant.

34

Hypermutation and Affinity Maturation

The repertoire of Ag-activated B-cell Abs is improved and diversified via two

functions: hypermutation and receptor editing (or affinity maturation of the immune

response) of only the high-affinity Abs. Abs involved in the secondary response typically

have a higher affinity than those of the primary response. This affinity maturation

phenomena is made possible through somatic hypermutation. During clonal expansion,

random changes are performed on the receptor arrangement of the Ab with the intent of

increasing the affinity of the Ab and adding it to the memory pool. However, one must be

aware the risk of this random mutation may actually result in a non-functional or self-

reactive Ab.

George and Gray [GG99] argued for a second diversifying function during affinity

maturation—Ab receptor editing. They conjectured this would offer the ability to escape

local optima on an affinity landscape. Figure 10 illustrates an example of the purpose of

receptor editing [DCVZ99a]. Here, somatic hypermutation with selection aids in

discovering the local optima (exploitation), while receptor editing introduces diversity to

aid in finding the global optimum (exploration), which could be a new candidate

receptor.

In summary, mutations aid in exploring local regions while receptor editing can

prevent premature convergence into unsatisfactory local optima. Hence, successful

affinity maturation is based upon the complementary roles of these two functions.

35

Figure 10: Example of shape-space representation of an affinity landscape [adapted from
Timmis02]

2.3 Artificial Immune Systems (AIS)

The concept of a computational Artificial Immune System (AIS) was introduced

in 1986 by Farmer, Packard and Perelson [Farmer86] who set out to find efficient

abstractions of processes found in the human biological immune system. Almost a decade

later, AIS practitioners such as Forrest [Forrest95], Dasgupta [Dasgupta99], and Timmis

[Timmis02], were motivated to formalize immunological phenomena to develop

engineering and computing tools.

AIS is classified as a GA and falls under the field of Evolutionary Computation

(EC), defined by Bäck, Fogel, and Michalewicz (who also refer to EC as EA) as,

“methods of simulating evolution, most often on a computer. The field encompasses

methods that comprise a populated-based approach that relies on random variation and

selection” [EC1]. As the AIS is still in its developmental infancy, there currently is no

standard definition or experimentally validated problem domain application; a claim

36

agreed upon at the 2006 (5th annual) International Conference on Artificial Immune

Systems (ICARIS). De Castro and Timmis reference three solicited field definitions

[Timmis02]:

1. [Starlab]: “Artificial immune systems are data manipulation, classification,

representation and reasoning methodologies which follow a biologically plausible

paradigm, that of the human immune system;”

2. Timmis: “An artificial immune system is a computational system based upon

metaphors of the natural immune system;”

3. Dasgupta: “Artificial immune systems are intelligent methodologies inspired by

the immune system toward real-world problem solving.”

These gentlemen sum up these definitions in a single general concept: “Artificial Immune

Systems (AIS) are adaptive systems, inspired by theoretical immunology and observed

immune functions, principles and models, which are applied to problem solving.”

Along with this single concept, De Castro and Timmis attempt to come closer to

defining a standard architecture through their abstract AIS model and three required

“basic elements” to structure the framework of a biologically inspired algorithm

[Timmis02]:

1. REPRESENTATION FOR THE COMPONENTS OF THE SYSTEM:

a. Detector: an Ab responsible for BIS defense;

b. Ab: a normal (self) network event;

c. Ag: a abnormal (non-self) event, recognizable by the BIS and removed by

the detector;

37

2. A set of mechanisms to evaluate the interaction of individuals with their

environment and each other (i.e., the environment is shaped by user input stimuli,

one or more fitness functions, etc.);

3. Procedures of adaptation that govern the dynamics of the system (e.g., how

behavior and chromosomal allele structure vary over time through mutation).

This framework can be thought of as a layered approach (Figure 11). The basis for an

AIS begins with the pre-defined problem domain, which governs the method of

representation. Once chromosome data structure representation (e.g., bit string, real-

valued vector, length, etc.) is decided, one or more affinity measures are used to quantify

interactions of the system’s elements; e.g., Hamming distance measurements applies to

bit string representation while Euclidian distance is applied to real-valued vectors. The

top layer, immune algorithms, encompasses those functions that govern the behavior

(dynamics) of the system; e.g., method of mutation, selection, evaluation, etc. These

layers, integrated into an algorithm, and given a data set of the application domain lead to

a potential domain-specific solution.

AIS

Solution

Application Domain

Immune
Algorithms

Affinity Measures

Representation

Figure 11: Layered AIS framework [Timmis02]

38

Initial AIS applications were toward pattern matching, stochastic searchers and

sorters of complex problems and data structures [Timmis02]. The realm of computer

network security—specifically the intrusion detection problem—is the newest AIS area

of research. De Castro and Timmis offer a scope of popular AIS application areas,

including but not limited to [Timmis02]:

1. pattern recognition;

2. fault and anomaly detection;

3. data analysis (data mining, classification, etc.);

4. agent-based systems;

5. scheduling;

6. machine-learning;

7. autonomous navigation and control;

8. search and optimization methods;

9. artificial life;

10. security of information systems.

2.3.1 Landscape and Ab-Ag Representation

To computationally model the landscape and actions of the BIS, Perelson and

Oster [PO79] introduced the concept of shape-space (S), as represented in Figure 12.

They conjecture a complete repertoire is achieved within the known immune recognition

patterns. The concept of shape-space is that the degree of binding between a receptor and

the molecule it binds to, a ligand, involves short-range interactions based on properties

such as hydrogen binding, electrostatic charge, etc. The molecules should be able to

39

approach and contact an appreciable portion of each other’s surface, binding at

complementary points. In 1989, Perelson called this receptor arrangement the generalized

shape of a molecule. Consider that an Ab combining site (paratope) can be expressed by

P parameters: length, width and height of any valley or ridge of the combining site; its

hydrogen binding degree; etc. Then, a point in a P-dimensional shape-space specifies the

generalized shape of an antigen binding region.

Figure 12: Recognition region shape-space: a paratope (•) recognizes any epitope
complement (X) within surrounding volume Vε

For example, if a human has a repertoire of size N, then its shape-space would

contain N points within a finite volume V. Each paratope can interact with all epitopes

within a neighborhood of size parameter ε , called the recognition region of volume Vε .

The strength (affinity) of an Ab-Ag interaction is measured by its degree of

complementarity. The less complementary the interaction, the lower the Ab affinity;

albeit the two may still successfully bind. Because each Ab can recognize all Ags in its

region and an Ag can have differing epitopes, finite Abs can recognize virtually an

infinite number of points in Vε [DVCZ99].

40

Distance-Measuring Techniques

The Ab-Ag representation (data structure) aids in determining which distance

measure to use in calculating their degree of complementarity (interaction).

Mathematically, the generalized shape of a molecule (m) can be represented by a set of

real-valued coordinates m = <m1,m2,…,mL>, which is regarded as a single point in the P-

dimensional real-valued space (m∈SL⊆ Lℜ). The affinity value between the two is

related to the “distance measure” between them, as either strings or vectors, using the

Euclidian distance or Manhattan distance measure. If the coordinates of an Ab are given

by <Ab1, Ab2,…,AbL> and the coordinates of an Ag are similar, <Ag1, Ag2,…AgL>, then

the distance between them is found using Euclidian distance (Equation 1) or Manhattan

distance (Equation 2).

2

1
()

L

i i
i

E ab ag
=

= −∑ . (1)

1
| |

L

i i
i

M ab ag
=

= −∑ . (2)

Shape-spaces involving real-valued coordinates and Euclidian distance are called

Euclidian shape-spaces while shape-spaces involving real-valued coordinates and

Manhattan distance are called Manhattan shape-spaces [Smith97; S&P88; DeBoer92].

The difference between the two is that Manhattan distance presents an interesting

alternative in the domain of parallel (hardware) implementation of these shape-space

algorithms [DCVZ99a]. If the molecule’s data structure is represented by a bit string, the

41

Hamming shape-space should be considered for its representation of Abs and Ags as an

alphabet of size k to the power of its length (sequence) L [Farmer86; Smith97; DBP91;

S&C92a,b; Hightower95,96; Perelson96; Detours96]. The Hamming distance (Equation

3) for this type shape-space is defined as

1

1
0{

L

i i
i

i iif Ab Ag
otherwiseH whereδ δ

=

≠= =∑ . (3)

When the distance between the two molecules is maximized, a perfect

complement is achieved and their affinity is maximal. If not maximal, Ab-Ag interactions

in Hamming space must be measured separately from Euclidian and Manhattan space.

For Euclidian and Manhattan space, the distance can be normalized (i.e., over parameter

[0,1]) so that affinity threshold (ε) would also be within that range. On the other hand, if

dealing with bit string data structures, then Ab-Ag representation with regard to

Hamming distance is simpler. Molecular binding occurs when Ab and Ag bit strings

match each other in a complementary fashion. Hence, the Ab-Ag affinity value is the

number of complementary bits, determined through application of the XOR operator, as

exemplified in Figure 13 [DCVZ99a].

Figure 13: Hamming distance calculation between two binary molecules of length L = 8

42

An alternative (and complement) to Hamming distance is the r-contiguous bit

rule, which is considered more biologically appealing [DCVZ99a]. This rule measures

affinity through contiguous symbol matching between two sequences. For example, two

strings s1 and s2 match under the r-contiguous bits rule if s1 and s2 have the same symbols

in at least r-contiguous bit positions (specified by the user). An extensive background and

comparison of the various pattern matching functions can be found in [HWGL02].

2.4 Search Algorithms

While the AIS is our chosen algorithmic framework, its effectiveness and

efficiency are driven by the search algorithm(s) within it. The search algorithm(s) must

be carefully selected as each has its own particular strengths, weaknesses and problem

domain(s) of application. Many times, in an attempt to utilize an understood algorithm,

developers re-shape the problem domain to fit the algorithm. To the contrary, the search

algorithm must be selected based on the particulars of the problem domain.

In a given landscape, one seeks either the global optimum value (be it the

maximum or minimum) or the set of optimal values. Effective search techniques provide

a mechanism for balancing two seemingly conflicting search objectives: exploration and

exploitation. Exploration involves maximizing the amount of space searched

(diversification) while exploitation exploits a best solution in a localized neighborhood of

points (intensification) within the landscape [DPST06]. The purpose of searching is two-

fold:

1. at initialization, search for the optimized set (PFtrue) of values to find the fittest

detectors in order to most effectively detect anomalies;

43

2. after initialization (scanning phase), detectors continuously search for these

anomalies whose chromosomal composition meet the user-defined matching

threshold. Consequently, this effectiveness is based on the search algorithms

chosen for the AIS. In this section, the scope of search algorithms is discussed,

outlining their strengths, weaknesses, and their domain applicability.

2.4.1 Deterministic Search

A deterministic algorithm, informally speaking, behaves predictably. Given a

specific input, it always returns the same result, passing through the same sequence of

states in the state machine. These algorithms are the most popular due to their practicality

and efficiency level when executed on real machines. However, as the search space

increases in size and dimension, this technique becomes less efficient and feasible.

Strengths of deterministic search include:

1. best at efficiently finding the not-guaranteed optimum value within a

neighborhood;

2. guaranteed to terminate within infinite time.

Weaknesses of deterministic search include the inability to:

1. guarantee that final solution is the global optimum (i.e., the algorithm may have

found its way into a local optima);

2. escape local optima (without aid of nondeterminism);

3. discretely solve nondeterministic Turing Machine polynomial time Complete

(NP-Complete) problems without approximation.

44

There exist many powerful deterministic algorithms that solve a wide variety of

problems, such as greedy search, hill-climbing, branch and bound tree/graph search,

depth- (DFS), DFS with backtracking (DFS/BT), breadth-first (BFS) search, and best-

first search. However, many multiobjective optimization problems (MOP), defined in

Section 2.6, are high-dimensional, discontinuous, multimodal, or NP-Complete [CVL02].

Deterministic methods become ineffective in the face of MOP because they are

handicapped by the inability to find the complete set of optimal solutions that composes

the Pareto Front (introduced in Section 2.7).

2.4.2 Stochastic Search and the Evolutionary Algorithm

As the complementary of deterministic, stochastic algorithms are characterized by

randomness and unpredictability. Introducing additional decision-makers into the search

algorithm, such as probability, system clock time and heuristics, output is no longer the

same given the same input. Because many real-world scientific and engineering problems

are combinatoric and multiobjective in nature, stochastic search and optimization

approaches become preferable to deterministic. However, it should be stressed that one

advantage of deterministic algorithms over stochastic, such as DFS/BT, is that

deterministic algorithms are guaranteed to terminate because they always can exhaust the

entire search space. No stochastic searchers offer this ability [Michalewicz04]. Strengths

of stochastic search include:

1. best at approximating the global optimum of a landscape;

2. ability to escape local optima.

45

Weaknesses of stochastic search include:

1. computationally inefficient when within the locale of a neighborhood;

2. without a termination criterion, it executes for countably infinite time.

Evolutionary Algorithms

While many stochastic search techniques exist, only an EA has the ability to solve

multiple problems simultaneously, providing a range of solutions. Other stochastic

searchers are constrained to one problem at a time, providing a single solution, and are

discussed more in-depth in Appendix A. An EA is a generic term used to indicate any

population-based metaheuristic optimization algorithm that uses mechanisms inspired by

biological evolution, such as reproduction, mutation, recombination, natural selection and

“survival of the fittest” to perform exploration and exploitation [Bäck96]. EAs are

initiated with a population of chromosomes—solutions to the search problem we want to

solve—in order to find the best solution. The data structure of these chromosomes is

defined by the problem domain. In each generation, a set of probabilistic operators are

applied to the population of chromosomes, generating new possible solutions. Some of

these solutions are then selected to become part of a new, better population. This

procedure is repeated until the algorithm has reached a termination criterion defined by

the user.

46

Dr. Thomas Bäck, a fore-thinker in EA theory and practice, mathematically

symbolized a standard EA as an 8-tuple [Bäck96]: EA (I,Φ ,Ω ,Ψ ,s,ι ,μ ,λ)

where

• μ number of parent individuals;

• λ number of offspring individuals;

• I = Ax x As is the space of individuals, where Ax, As denote arbitrary sets;

• Φ : I → denotes the fitness function, assigning real values to each

individual;

• Ω {
1

ωΘ ,…,
z

ωΘ |
i

ωΘ : I λ → I λ }∪ {
0

ωΘ : I μ → I λ } is a set of probabilistic

genetic operators
i

ωΘ , each of which is controlled by specific parameters

summarized in the sets iΘ ⊂ ;

• s sΘ : (I λ ∪ I μ λ+)→ I μ denotes the selection operator, which may change the

number of individuals fromλ orλ +μ (depending on the operator’s ability to

extract good genes from parent to child), whereμ ,λ ∈ andμ =λ is permitted;

• ι : I μ → {true, false} is a termination criterion for the EA, which can be based

on a preset number of iterations (generations), an amount of time, or a delta

convergence threshold;

• the generation transition function Ψ : I μ → I μ (“from generation to generation”)

describes the complete process of transforming a population P into a subsequent

one by applying genetic operators and selection:

47

Ψ = s o
1i

ωΘ o … o
i j

ωΘ o
0

ωΘ

Ψ (P) =
s

sΘ (Q∪
1i

ωΘ (…(
i j

ωΘ (
0

ωΘ (P)))…))

where {i1,…ij}⊆ {1,…,z}, and Q ∈{∅ ,P}. Bäck defines the high-level algorithmic

formulation of EA in Algorithm 1.

1 procedure BäckEA
2 begin
3 t := 0;
4 initialize P(0) := { 1a (0),…, aμ (0)} ∈ I μ ;
5 evaluate P(0) : {Φ (1a (0)),…, Φ (aμ (0))}
6 while (ι (P(t)) ≠ true) do
7 recombine: P’(t) :=

r
rΘ (P(t));

8 mutate: P’’(t) :=
m

mΘ (P’(t));
9 evaluate: P’’(t) : {Φ (1''a (t)),…, Φ (''a λ (t))};
10 select: P(t+1) :=

s
sΘ (P’’(t)∪Q);

11 t := t + 1;
12 od
13 end

Algorithm 1: Bäck’s standard Evolutionary Algorithm [Bäck96]

2.5 Multiobjective Evolutionary Algorithms

As discussed in section 2.2.2, we desire EAs over other stochastic algorithms for

their ability to solve multiple problems simultaneously. However, EAs are typically

coded to be constrained to single objective optimization problems. Hence, we consider

the Multiobjective Evolutionary Algorithm for the following reasons [Lamont06]:

1. FLEXIBILITY: can find several trade-off solutions in a single algorithm run

instead of a series of separate runs;

48

2. CONFIDENCE: less susceptible to structural forms of solutions—a concern for

classical algorithmic techniques;

3. FEASIBILITY: find solutions to extremely complex/time consuming and high

dimensional real-world applications that have multi-objective goals;

4. ROBUSTNESS: use little problem domain knowledge and can generate a good

distribution of diverse trade-offs;

5. IMPLICIT PARALLELISM: MOEA structures reflect efficient parallel

processing.

The definition and generic algorithmic structure of an MOEA is similar to an EA (which

is synonymous with EC, per section 2.3) except for minor source code changes to

accommodate multiple, independent objectives and their constraints (if any). Per Coello

and Cortés, MOEAs share three main similarities [CC05]:

1. THEY ALL USE PARETO RANKING: individuals in the population are ranked

based on Pareto Dominance (i.e., nondominated individuals are scored—or

ranked—the highest);

2. THEY ALL USE SOME FORM OF ELITISM: this method of selection allows

for the retaining of solutions that are globally—not locally—nondominated, with

respect to all populations, to include the current one;

3. THEY ALL EMPLOY DIVERSITY; i.e., through a mechanism such as mutation.

The primary motivation for using EAs in solving MOPs is their unique ability to deal

simultaneously with a set of possible solutions (comprising a population) which allows us

49

to find several optimally known members of the solution set in a single run of the

algorithm, vice separate runs as with traditional algorithms (see Appendix A).

2.6 Single and Multiobjective Optimization

As previously discussed, the strength (effectiveness) of Abs is based upon their

affinity to Ags. From the affinity landscape perspective, our objective, defined as a

specified level of desired attainment of a value [CVL02], is the maximal affinity of an Ag

binding site. De Castro and Von Zuben define optimization as “the task of finding the

absolutely best set of admissible conditions to achieve a certain objective, formulated in

mathematical terms” [DCVZ99b]. There are three types of optimization within a given

data set:

1. discovery of the global maximum;

2. discovery of the global minimum;

3. hybrid: minimization of some values and maximization of others, aggregated into

a single objective.

Single-Objective Optimization

Coello, Van Veldhuizen, and Lamont define global optimization as, “the process

of finding the global minimum4 within some search space S [CVL02]. Hence, given a

function f : (), , * *nS for x thevalue f f xΩ⊆ = → Ω ≠∅ ∈Ω > −∞ is called a

global minimum if and only if () (): *x f x x∀ ∈Ω ≤ where *x is the global minimum

4 Or maximum, since min{ ()}f x = -max{ ()}f x− .

50

solution(s), f is the objective function, and the set Ω is the feasible region (Ω ⊂ S). In the

context of Ab-Ag affinity matching, we seek the globally optimal (maximal) affinity

between an Ab and all Ag binding sites within its reach. In this case, single objective

optimization is appropriate. However, reality dictates that an AIS is complex enough to

involve more than one objective. Hence, single objective optimization becomes

insufficient as we require multiple-objective optimization.

The Multiobjective Optimization Problem

Osyczka defines the Multiobjective Optimization Problem as [Osyczka85]: “a

vector of decision variables which satisfies constraints and optimizes a vector function

whose elements represent the objective functions.” These functions form a mathematical

description of performance criteria which are usually in conflict with each other. Hence,

the term optimize means, “finding such a solution which would give the values of all

objective functions acceptable to the decision maker.” In this context, decision variables

are the numerical quantities for the values chosen for the optimization problem. For

example, a vector of n decisions x is represented by x =[x1,x2,…,xn]. Constraints

mathematically define limitations or restrictions (e.g., resources, physical, time) imposed

upon the decision-maker in order to produce an acceptable solution. For example, for a

vector x of values to be all positive integers, the function imposed upon it would be

written gi(x) ≥ 0 for i = 1,…,n. The objective of MOPs is to find good compromises (or

“trade-offs”) rather than a single solution, as in global optimization [CVL02]. As more

independent objectives are added to a problem, the more complex interpreting the results

51

becomes. Therefore, we turn to a visualization of the solutions, as conceived in 1896 by

Italian economist Vilfredo Pareto.

2.7 Pareto Optimality and Nondominance

By definition, MOPs produce multiple solutions which may not be optimal for all

objectives [CVL02]. By adjusting one solution for greater optimality, we risk decreasing

the desired value of one or more other solutions. Thus, we desire a set or subset(s) of

nondominated solutions through Pareto Optimality. A point *x ∈Ω is Pareto Optimal

(with respect to the entire decision space) if there exists no feasible vector x which

would decrease some criterion without causing a simultaneous increase in at least one

other criterion [CVL02]. Mathematically, for every *x ∈Ω and I = {1,2,…,k}, either

(() (*))i I i if x f x∈∀ = or there is at least one i∈I such that () (*)i if x f x> .

Pareto dominance helps to define one vector whose every value is more optimal

than another vector. For example, vector a = (a1,…,ak) is said to dominate vector b =

(b1,…,bk), denoted as a ≺ b , if and only if a is partially less than b, i.e., ∀ i∈{1,…,k}, ai

≤ bi ∧ ∃ i∈{1,…,k} : ai < bi. In a given MOP, ()f x , the Pareto Optimal Set (P*) is

defined as a set or subset of nondominated points (i.e., no point dominates another). This

is mathematically written as P* {x∈Ω | ¬ ∃ x’∈Ω (')f x ≺ ()f x }.

All feasible solution points are plotted within decision space, called genotype, and

the set of nondominated solutions that rest on the solid boundary region are inside

52

objective space called phenotype, as depicted in the example of a bi-objective

minimization problem in Figure 14, is called the Pareto Front (PF*) [CVL02].

BETTER

B
E
T
T
E
R

f1

f2

0

100

0 100

0

0

0

0

4

1

2

3

c1

c2

c3

c4

c5

c6

c7

c8

PF*

genotype space

phenotype space

Figure 14: Pareto front (denoted by bold line) of a bi-objective minimization problem

In Figure 14, each solution point has a integer representing the total number of other

solution points that dominate it. By definition, all phenotype-space points always have a

value of zero because they are nondominated. All genotype-space points have a value of

at least one. A solution point dominates another when it has a value more optimal than

another for all objectives. For example, c6 is dominated by four points: c1, c2, c3 and c5.

On the other hand, while c7 has a lower second-objective (f2) score than c6, its first-

objective (f1) score is higher; hence, it does not dominate c6. Mathematically written,

PF* { a = f =(f1(x),…,fk(x)) | x∈P*}.

53

Every PF* has a true Pareto Front (PFtrue) and known Pareto Front (PFknown). A

PFtrue is the optimal P* in that no further trade-offs may make the solution set any more

desirable (i.e., any increased value of one solution decreases one or more solutions by a

greater value). PFknown is the resulting PF* upon algorithm termination—it either matches

PFtrue or is short of it, depending on execution time. Finding PFtrue is analogous to

executing a stochastic algorithm against an NP-Complete problem—the global solution

(set) may require infinite time to be discovered. Therefore, PFtrue is typically defined by

the subjective decision of when to terminate an EA, based on factors such as: setting a

fixed number of generations, achieving the pre-determined optimal solution, or lack of

further convergence after a number of generations. PFtrue is typically used as an

effectiveness benchmark against other algorithms’ resulting PFknown.

2.8 Summary

In summary, this chapter discusses background information relevant to the

consideration and construction of an AIS-predicated MOEA with application to the ID

and anomaly problem domain. When developing such an MOEA, careful thought must

go into the selected problem domain because this drives the choice of search algorithm.

Further, the type of optimization must be considered—whether single or multiobjective.

To most accurately model a human AIS, a simultaneous problem-solving algorithm

should be considered, in a multiobjective context. These ideas form the basis of the high-

level design of such an MOEA, in the next chapter.

54

III. High-Level Design and Specification

In this chapter, the methodology and meta-level hardware and software

architecture design of our AIS-inspired MOEA is presented. To provide perspective,

Sections 3.1 and 3.2 discuss the formal classification of our algorithm and the associated

space and fitness landscape complexity. Section 3.3 reviews how an MOEA is integrated

into the generic AIS model. Section 3.4 formally introduces our algorithm’s application

domain in order to understand the rationale of our design model. Sections 3.5 provides

the impetus behind our algorithm’s development. Finally, Section 3.6 explains the

algorithm’s abstract design and specification.

3.1 Formal Problem Classification

The most common method of identifying computer network intrusions is the

matching of incoming network protocol packet headers to “known bad” packet header

signature strings [HWGL02], or signature-based detection. This method of string

evaluation is analogous to the classic NP-Complete Boolean Satisfiability Problem (SAT)

[Michalewicz04]. The SAT is the enumeration (or exhaustion) of a search space of n

variables against a function to determine which variables return true from that function.

Because the number of true value combinations can range from zero to one-to-many, the

problem degenerates into a worst-case enumeration across the entire search space,

leading its classification as a combinatoric NP-Hard problem. By definition of NP-Hard,

our problem cannot be solved in polynomial time [DPST06]. Hence, deterministic search

methods can take, in worst case, infinite time. Hence, one is forced to consider a

55

stochastic approximation solution. The amount of data in a packet used to define a

signature varies among IDSs, ranging from 49 bits in Hofmeyr’s AIS to over 320 bits in

Williams’ algorithm [Hofmeyr00, Williams01].

This research continues the work of two algorithms formally introduced in

Section 3.5: REALGO, which defined a bit string chromosome signature data structure of

30 bits, and MISA, which defined a bit string chromosome of 820 bits. The size of a

universe of bit string combinations is dependent upon alphabet cardinality raised to the

power of its length. Here, the signature value is either “0” or “1,” resulting in an alphabet

of size two. This value is raised to the power of the length of the bit string. At a size of 30

bits, there are 230 or approximately 1.07 billion bit string combinations that would need to

be generated by a deterministic algorithm in order to completely cover the search space.

Exponentially worse, a 820-bit string has 2820 or approximately 6.99 x 10246 bit string

combinations which must be evaluated.

To determine the time required to evaluate all possible bit string combinations, a

simple fragment of Java code was developed to calculate the time required to generate

one bit string (chromosome), given a length. Executed on a Windows XP Professional-

based operating system (OS) with 1.69 GHz Intel Xeon™ processor and one gigabyte

(GB) of random access memory (RAM), the Java Runtime Environment (JRE) version

1.5 required a (340-trial) average of 11.2 microseconds to generate one 30-bit string and

287 microseconds for one 820-bit string. Therefore, one 30-bit string would take

approximately 96 seconds to deterministically evaluate while a 820-bit string would take

approximately 7.68 x 10245 years. While the latter is clearly unacceptable, the former is

56

just as unacceptable when one considers the rate at which packets enter the network,

which, ideally, should be individually evaluated against all combinations. To compound

this problem, only a fragment of all incoming packets represent non-self packets, while

evaluation on the majority remainder of self packets is wasted work.

3.2 Space Complexity and Search Landscape

In the Hamming shape-space, the set of all possible Ags is considered as a finite

space of points. Ags similar in composition occupy neighborhoods of that space because

malicious network activity is typically executed as a sequence of non-self packets sent

from attacker to victim machine. As exemplified in the last Section, the total number of

unique Abs and Ags is given by kL, where k is the size of the alphabet and L is the bit

string length. As depicted in Section 2.3.1, Figure 12, a single Ab can recognize a

neighborhood of Ags, based on its affinity threshold integer parameter ε . For example, if

ε = 0 (i.e., a perfect match is required), then that Ab can recognize only an exact

complement Ag. The number of Ags covered by one Ab within a neighborhood (region

of stimulation ε) is given by:

 ()
0 0

!
!()!

L
i

i i

LC
i L i

ε ε

= =

= =
−∑ ∑ , (4)

where C is Ab coverage [DCVZ99]. Based on Equation 4, an alphabet of size k and a bit

string of length L, the minimum number of Ab molecules (N) needed to fully cover the

shape-space is:

LkN

C
⎡ ⎤

= ⎢ ⎥
⎢ ⎥

, (5)

57

where the value is rounded to the next higher integer. Table 2 gives a perspective on the

number of Abs required for full Hamming shape-space coverage, based on varying bit

string length L, affinity thresholdε , and alphabet k = 2 (symbols “0” and “1”).

Table 2: Coverage of shape-space (C) with required Ab repertoire (N) for differing bit

string lengths (L) and affinity thresholds (ε) with alphabet size k = 2

AISs have traditionally focused on the single objective problem because of the

argument that the only objective is to effective classify non-self. Single-objective

problems are in the form of either one objective or condensing multiple objectives into a

single objective, at the cost of effectiveness, in order to find the global optimum.

However, reality dictates problems are complex and multidimensional. For example,

another independent objective not considered here, to make this a tri-objective

optimization problem, is efficiency.

Search landscape dimensionality is driven by data structure composition and the

number of objectives. The greater the length (number of dimensions) of the bit string, the

more potentially chaotic the search space. Figure 15 depicts a two-dimensional example

of a search landscape composed of self and non-self events [Williams01]. Here, the

58

landscape is mostly smooth with small clusters of self events and fewer, isolated non-self

events. This is because IDSs have the resources to protect only a limited range of

machines and their services. As tighter security policies reduce services or machine

coverage, the landscape becomes yet smoother. This observation stems from our data set

analysis in Section 5.3.

LEGEND

self events

non-self events

arbitrary-shaped
Ab detector

Figure 15: Two-dimensional search landscape example [adapted from Williams01]

Compounding the complexity of this search landscape is the constraint that our

Ab detectors must react only to non-self events. The location, shape and value of ε

equate the fitness values of a detector. The larger the value of ε , the greater the Ab’s

neighborhood of detection. However, the tradeoff lies in the greater coverage of self

events. Hence, an alternative to discarding self-matching Abs is to reshape them so they

do not cover self. Empirical shaping of Abs (e.g., hypersphere, hyperrectangle, hybrid,

59

etc.) is no meager task, as much research been dedicated to it; e.g., [Shapiro05]. Figure

15 shows three possible areas of Ab detector coverage: within self events, within non-self

events and in uncovered areas. No coverage is desired in the first area because the

detector can declare the self as non-self (false positive). Further, coverage in the third area

is wasteful because no meaningful network traffic resides here. An example would be a

detector data structure searching for IP fields or services which security policies have

disabled. Hence, all detectors should be shaped to cover areas not inhabited by self and

non-functional services. Negative selection, as discussed in Section 2.2.1, helps to

initially shape Ab detectors for ideal coverage by either removing detectors that match

self, bases on an affinity measure as such Hamming distance, or training self-matching

detectors via mutation until they don’t match self, as shown in Figure 16. Our algorithm’s

method of negative selection—removal without replacement—is discussed in Section

3.6.2.

Figure 16: Negative selection process [HF00]

60

3.3 Integrating an MOEA with the Generic AIS Model

As introduced in Section 2.4.2, EAs are defined by their use of evolutionary

“survival of the fittest” principles—such as recombination, mutation and selection

operators—and a population-based meta-heuristic optimization algorithm to perform

exploration and exploitation. Therefore, we consider Bäck’s standard EA construct (see

Algorithm 1, Section 2.4.2), expanding the evaluation operator to facilitate two fitness

values—one for each objective—to extend this model to an MOEA. Our MOEA’s

operators are enhanced by using the ideas of two prior AIS-related algorithms, described

in Section 3.5.

As discussed in Section 2.3, only an abstract AIS framework exists, solidified by

the problem domain, to guide our AIS construction. AISs are one type of GA, fashioning

an EA though efficient abstractions of the human BIS. In defining our AIS framework:

1. our application domain is the ID data set;

2. our representation is a bit string array because of its use by both existing

algorithms we build upon;

3. our affinity measure is defined by Hamming Distance because it’s the most

commonly used method of bit string distance measurement [HWGL02]. We did

not choose the r-contiguous bit rule because we are pattern-matching the entire

context of the packet vs. particular fields;

4. our immune algorithm is based on the aforementioned MOEA.

With this algorithm construct and the accompanying ID data set, we possess the required

information to develop and test an ID domain solution.

61

3.4 AIS Application Domain

As discussed in Section 2.3, the application domain is the first step in defining the

architecture of an AIS algorithm; hence, we now tersely discuss the ID data sets that are

input into jREMISA. Because we are analyzing the ID domain on the scale of distributed

computers, a data set is required that mimics clean and attack network traffic among

many computers. Our chosen data sets are large, binary network traffic files composed of

Internet Protocol (IP)-based traffic, with the majority of IP records being Transmission

Control Protocol (TCP), User Datagram Protocol (UDP) and Internet Control Message

Protocol (ICMP) communication packets. Each protocol, which most commonly facilities

non-self traffic [HWGL02], contains packet context headers and content payloads which,

when encoded and compared to the Abs, should determine which or not they are non-self.

In this research, we focus on packet headers only.

3.5 jREMISA: A Continued Work

Two AIS-inspired algorithms were found that claimed a level of experimental

success over other algorithms with a similar objective: Edge’s Retrovirus Algorithm and

Coello and Cortés’ Multiobjective Immune System Algorithm [ELR06, CC05]. Both

algorithms were observed to possess exclusive strengths, which, when combined, we

conjecture could result in an AIS-inspired MOEA that generates highly effective Abs for

62

application to an ID data set. For the sake of simplicity and identification, our algorithm

is called the Retrovirus-inspired Multiobjective Immune System Algorithm (jREMISA)5.

3.5.1 REALGO History

The Retrovirus Algorithm (REALGO), a single-objective AIS, was conceived by

Edge, Lamont, and Raines, in 2006 [ELR06]. Its intent was to escape local minima when

performing complex searches by providing a single memory for each Ab of the last

location visited. This practice of preventing premature convergence into local minima

was modeled after the BIS’ use of reverse transcription ribonucleic acid (RNA). For each

generation, the RNA operator copies the Ab into memory. If the next generation results in

a lower fitness for that Ab, its RNA copy is restored from the RNA-produced memory in

order to continue search in a different direction. Finding the global minimum in this

manner is intended to better discover the optimally fit Abs. Therefore, this RNA concept

is applied to our fitness function. REALGO’s algorithm flowchart, citing the RNA

procedure jREMISA utilizes, is shown in Figure 17.

5 Because jREMISA is built upon REALGO and MISA, we recommend the reader review Edge’s
REALGO paper and Coello’s MISA paper [ELR06, CC05].

63

RNA Operation

Figure 17: REALGO algorithm flowchart [adapted from ELR06]

3.5.2 MISA History

Multiobjective Immune System Algorithm (MISA), a multiobjective AIS based

on the Clonal Selection Principle, was conceived by Coello and Cortés. They claim this

algorithm to be “the first attempt to use an artificial immune system to solve the general

multiobjective optimization problem” [CC05]. Their approach uses Pareto dominance

and feasibility to determine which Ab solutions deserve to be cloned. Nondominated Abs

(solutions) are maintained in a secondary (or external) population, constituting the elitist

selection mechanism, which maintains the set of best Abs (solutions) thus far and moves

64

this PFknown population toward PFtrue over time. MISA’s order of execution is summarized

in Algorithm 2.

1 procedure MISA
2 begin
3 randomly generate initial Population (Pi)
4 initialize empty secondary Population (Ps)
5 repeat
6 determine Pareto optimality for all Ab∈Pi
7 copy Pareto-nondominated Abs∈Pi into Ps /* elitism */
8 determine uniform number of clones for each Abs∈Ps to expand

 Ps by 600%
9 perform cloning of Abs∈Ps based on Step 8
10 apply uniform mutation to each cloned Abs∈Ps
11 replace lost Abs∈Pi by copying back best Abs∈Ps
12 until (predetermined number of evaluations)
13 end

Algorithm 2: Multiobjective Immune System Algorithm (MISA)

However, MISA differs from other MOEAs in that it does not use recombination

due to the sufficiency of mutation to move its Abs around the search space. Because of

MISA’s experimental results, our algorithm utilizes their clonal selection principle

methodology by implementing a secondary population and mutation and selection

operators according to their specification.

3.6 jREMISA Design

This section provides a high-level, abstract overview of the methodology and

many factors that are integrated into jREMISA. Single objective EAs consist of a

population of Abs where each has a singular fitness value. This fitness value allows Abs

to be ranked amongst each other at each generation, enabling a selection mechanism to

65

decide which Abs survive to the next generation (ι +1). Being multiobjective, each of our

solutions (Abs) contains a set of two values:

1. an integer measure of how effectively they classify between self and non-self;

2. an integer measure of their affinity threshold (hypervolume) deviation from the

starting affinity threshold defined at negative selection.

We desire a global minimum because:

1. a higher fitness value means more penalties have been assessed for incorrect

classifications;

2. we desire Ab hypervolume to deviate as little as possible from the experimentally

derived ideal affinity threshold of 39% (see Section 5.3).

Consequently, multiobjective algorithms don’t return a globally optimal solution but

rather a set of solutions, allowing analysis of the Pareto Optimal solution set’s tradeoffs

through a Pareto Front.

3.6.1 Data Representation

Per Section 2.2, the two key actors are the Abs and Ags. Abs are the BIS detectors

equally distributed throughout the body, searching for non-self Ags. Ags come in two

forms: self Ags (normal traffic events) and non-self Ags (abnormal traffic events). A

single Ab or Ag is referred to as a chromosome where each dimension is referred to as an

allele. It is the duty of the Ab to interact with Ags to classify them as either self or non-

self. Hence, Abs are system defenders while incoming information from the outside is

considered pathogenic, coming into contact with Abs to determine if the percentage of

66

complementarily over chromosome length meets the affinity threshold for the Ab to

declare the Ag as non-self.

As introduced in Section 2.3.1, the data structure that compose Abs and Ags can

be formed of differing data types (e.g., integer, binary, real-valued numbers, etc.),

alphabets and lengths, which determine the dimensionality of the search landscape. AIS

algorithm designers typically employ fixed-length binary string representation due to its

ease of manipulation by EAs, low computational cost, minimal size, and, most

importantly, it most closely models the BIS for its simple “yes-no” complementary

matching outcome of Ab-Ag epitope encounters (i.e., affinity-matching Hamming value).

Further, this was (conveniently) the data structure employed by both our prior algorithms.

Therefore, we encode our generated Abs and incoming data set Ags as bit strings. Bit

string length is determined by the type of each incoming packet, further discussed in

Section 4.3. Because we chose the signed integer data type for our data structure, we have

the freedom of assigning values to Ab alleles other than zero and one. Using Java, our

allele values can range between –(231) and 231-1. Hence, seven additional attributes are

appended to the end of each Ab: name, number of false detections, (true positive + true

negative) fitness score, (false positive + false negative) fitness score, affinity threshold

deviation, whether or not the Ab has been broadcasted to the subnet and Pareto

dominance value.

3.6.2 Population Initialization and Negative Selection

The single population of Ab detectors is typically initialized through a

pseudorandom-generated binary value for each allele of the Ab array. This was the

67

method employed by both REALGO and MISA. Our method generates values the same

way but differs in population pool size and Ab length. To date, all AIS literature has

suggested initiating a single randomly-generated pool, in which all trained Abs are

evaluated against each incoming Ag. However, since we have the ability to determine our

incoming data packet’s protocol (i.e., TCP, UDP or ICMP) before it is evaluated, only

Abs of the same protocol are evaluated against the Ag. Hence, we initialize three separate

fixed-length populations whose length always matches that of the incoming Ag. We

conjecture this increases fitness function accuracy by evaluating Abs and Ags of

matching protocol and increases efficiency by limiting negative selection evaluation to

one subset of the three Ab populations.

Negative selection is performed with a user-defined affinity threshold and

Hamming distance measure. If the total complimentary bits divided by the length of the

bit string meets or exceeds the threshold, it is discarded without replacement. This is

preferred over mutation training to guarantee the surviving population doesn’t recognize

a single self event in the clean data set. This function does not employ the data set truth

set.

3.6.3 Evaluation (Fitness) Functions

As introduced in Section 2.2.1, pattern recognition based on the complementarity

of binding regions between an Ab and Ag is the heart of our fitness function. This

algorithm has three different evaluation functions: negative selection, fitness function and

the Pareto optimality test. With our random populations established, the data set stream is

opened, reading in one packet at time, in a “sliding window” fashion, as depicted in

68

Figure 18. Each tcpdump packet received is encoded into an Ag and its affinity from each

Ab measured using Hamming distance (from Section 2.3.1, Equation 3):

1

1
0{

L

i i
i

i iif Ab Ag
otherwiseH whereδ δ

=

≠= =∑ .

Negative Selection

The first evaluation function—step three of Bäck’s EA—occurs only once and

represents the negative selection phase—the removal of all random Abs that match self.

Here, the data set is sanitized, containing only self events, for the purpose of training the

random Abs not to react to self. As an Ab and Ag are compared, the distance value is

divided by the Ab length to determine if the value meets or exceeds the user-defined

affinity threshold. If so, the Ab has reacted to (and would summarily attack) self; hence, it

is discarded. At the completion of negative selection, remaining Abs are feasible

solutions that meet our constraint of not matching self and are titled, “trained but

immature:” trained to discern self from non-self but immature in lack of contact with

non-self. These trained populations are now ready to interact with an ID data set

containing labeled attacks.

Fitness Function

The second evaluation function, which occurs within each generational loop, is

the fitness function responsible for calculating fitness values of each Ab against a data set

with labeled attacks. Per Section 2.6, optimization involves finding the global maximum

or minimum value within a landscape. We desire the global minimum for our

independent objectives. The first objective measures the sum value of correctly classified

69

self and non-self, in which we desire a minimal value. The second objective measures Ab

hypervolume deviation, in which we desire a minimal value, as well. As this is a proof-

of-concept algorithm, a truth set of extracted attack packet numbers guides the fitness

function to determine whether the Ab was correct in its classification (see Appendix B).

Every Ab suffers both a 50% chance of Cauchy mutation and a penalty value in its fitness

(first) objective axis at every generation based on how inaccurate their Ag classification

was. Hence, the fittest Abs have the lowest objective fitness scores. Each correct Ab

declaration rewards it with a 1% increase in affinity threshold (hypervolume) and a copy

of its chromosome within its RNA space. Conversely, a false detection shrinks that Ab by

the same affinity rewarded, assesses a “false detection” point, and its chromosome is

reverted to its stored RNA, returning it to its last search space position. If the number of

false detections equals the user-defined Ab lifespan, the Ab is removed from the

population.

Pareto Optimality Test

The third evaluation function measures the Pareto optimality of each Ab. As

introduced in Section 2.7, nondominated points are those desired solutions that lie within

phenotype or objective space. Every Ab is compared to every other Ab with regard to

dominance cardinality. Upon completion of scoring, Quicksort sorts the array in

dominance-ascending order to minimize the search time for the selection operator when

copying qualifying fittest Abs from the primary to the secondary population.

70

TCP Antibody Pool UDP Antibody Pool ICMP Antibody Pool

1010101011010001110101

01010101110110101010100101010111011010101010 0101010111011010101010

Data set
stream

Encoded ICMP Antigen Encoded UDP Antigen Encoded UDP Antigen

Random UDP
Antibody

Sliding window

All UDP Abs (Ag)

Extracted attack
truth set

Figure 18: Example of transient Ags evaluated against its IP protocol-matching Ab

3.6.4 Recombination, Somatic Hypermutation and Affinity Maturation

REALGO and MISA did not utilize recombination (crossover) due to the

sufficiency of mutation to move Abs around the search space and assimilate encountered

non-self data structures. Therefore, jREMISA does not employ crossover. Two types of

mutation are employed at two different areas of jREMISA:

1. CAUCHY MUTATION. Cauchy (distribution) mutation, used in REALGO, is the

division of a Gaussian distribution-generated random number by itself. This

mutation has been shown to have the ability to make long jumps to escape local

minima as compared to a Gaussian distribution [Yao97]. Hence, we use this

mutation method on false-detecting Abs in the fitness function. While REALGO

sets a 50% chance for each allele (bit) in the array to be mutated, we heuristically

71

choose which alleles receive Cauchy mutation, based on whether it was a false

positive or negative, described further at the end of Section 4.4.2.

2. UNIFORM MUTATION. This method, recommended by MISA, is employed in

our selection operator upon all cloned Abs within the secondary population. The

nondominated clones are mutated in N random positions, where N is the number

of objective variables. Dominated solutions are randomly mutated in (N plus the

number of Abs dominated by) positions.

Affinity maturation is the process of enlarging the Ab volume with the intent of

covering as much non-self space as possible, without impinging on self space. Our Ab

affinity deviation value is adjusted based on the truth of the Ab declaration, within the

fitness function. For every correct classification, the Ab matures (increases its affinity

threshold, or hypervolume) by 1%; otherwise, it decreases by 1%.

3.6.5 Selection Operator

Following MISA design, our selection operator involves a secondary or external

population that manages nondominated solutions. It employs elitism, copying the top 5%

of nondominated solutions from the primary into the second population. If there are not

enough nondominated solutions to compose 5%, then the least nondominated solutions

fill that gap. Next, the clonal selection principle (see Section 2.2.2) selects the Abs most

effective at Ag detection for cloning and subsequent mutation. Coello and Cortés

performed a series of sub-experiments to determine the most effective cloning rate for

each fittest Ab, concluding the Abs should be uniformly cloned until the secondary

population increases to 600% its size [CC05]. This cloning operation is followed by

72

somatic hypermutation (mutation) using a MISA-suggested uniform distribution.

Nondominated solutions are mutated in N random positions, where N is the number of

objectives. Dominated solutions are mutated in (N plus the number of Abs dominated by)

positions. The fittest secondary Abs are then copied back into the primary until the

primary population returns to original size (if any primary population Abs were removed

due to their meeting the false detection threshold), defining our evolution as a mix of both

parents and children (μ λ+). Finally, all dominated solutions within the secondary

population are removed, restoring it to a nondominated pool. The secondary population

cannot exceed the size of the primary population. This process is depicted in Figure 19.

Copy
fittest
5%

1010011010111Ab1

1010011010111

1010011010111

Ab2

Ab3

popp

pops

…Abn

Uniformly clone this 5% to 600% population size

Uniform Mutation upon clones; # random-point
mutations = N + numAbsDominatedBy

}

{

Fittest Abs are copied
into popp until popp

returns to original size

pops

pops

Finally, pops has all dominated Abs removed,
returning it to a true nondominated pool and no
larger than popp

LEGEND
popp primary population
pops secondary population
N number of objectives

Figure 19: Elitist selection operator process

73

3.6.6 Detector and Generational Lifecycle

Ab detectors do not live indefinitely unless they maintain nondominance. Those

detectors that meet the threshold for number of false detections are declared ineffective

and are discarded so more effective detectors may inhabit the search landscape. The

number of generations of an EA depends on the application domain. Algorithm

termination is typically based on:

1. a fixed number of generations t;

2. a measure of convergence over a set number of generations t;

3. a lack of a significant increase in fitness over t generations;

4. the desire to allow indefinite execution (t← ∞), as in a live environment.

jREMISA considers the passing of each data set’s Ag (packet) to be one generation vs.

the size of the data set. Hence, our number of generations is the number of packets

(events) of the entire data set.

3.6.7 Calculating the Pareto Front

MISA defines its true Pareto Front as the secondary population, at algorithm

termination [CC05]. The individuals within are all nondominated not only with respect to

each other but also with respect to all previous Abs attempting to enter this population.

Per our concept of three initial populations, jREMISA, in turn, has three secondary

population Pareto Fronts: one for TCP, one for UDP and one for ICMP. Any dominated

points within the secondary population at algorithm termination are indicative of not

enough nondominated points in that population. The values of these sets can then be

mapped into a two-dimensional Pareto Front.

74

3.6.8 Distributed AIS Communication

The BIS is, among other traits, a parallel and distributed system. Abs and other

BIS cells roam throughout the system, operating autonomously, yet communicating to

each other (e.g., an Ab communicates to nearby Abs when it has been stimulated by an

Ag). The Air Force Institute of Technology (AFIT) developed the Computer Defense

Immune System (CDIS) in an effort to combat the computer virus problem in a proactive

manner [HWGL02, Marmelstein99]. CDIS is a multi-agent, hierarchical, distributed

computational immune system modeled after BIS archetypes. In the distributed context,

CDIS addressed the need to disburse Ags and their workloads among the nodes in

networks. Lippmann, in his recommendations to improve existing IDS, recommends

approaches to detecting new attacks—specifically anomaly detection—should be

extended to multiple hosts [Lippmann00].

Our algorithm furthers these ideas through facilitating two different types of

messages to other jREMISAs running on the same subnet: newly discovered

nondominated Abs and user-typed instant messaging. A single AIS can monitor only a

single host or segment of network traffic, covering only a small portion of the search

landscape. Employing multiple AISs throughout the network increases coverage of the

search landscape and enables communication of their fittest (nondominated) Abs among

each other. Hence, after negative selection, jREMISA has the ability to listen for and

broadcast all nondominated Abs at the end of each generation, as depicted in Figure 20.

System console output confirms the sending and receiving of broadcast Abs. In addition,

75

users have the ability to broadcast one-line messages to each other, in the event they are

utilizing jREMISA in geographically distributed working areas.

Body / network
search space

Nondominated Abs

Antigen (Ag)

Antibodies (Abs)

jREMISA

jREMISA

jREMISA

jREMISA

jREMISA

jREMISA

jREMISA

Figure 20: Mapping of BIS distributed components to a distributed AIS

The potential exists to saturate network bandwidth with entire secondary populations

being broadcast after every generation. However, each Ab is allowed to be broadcast only

once, in its lifetime. Therefore, the user must decide the percentage of the secondary

population to broadcast at the end of each generation.

3.7 Summary

This Chapter describes the high-level design and specification of our algorithm

jREMISA. The methodology addresses the application domain’s formal classification and

landscape complexity. The foundational EA is multiobjective and fitted with abstract AIS

components to make it an AIS-inspired MOEA. The overall algorithm is constructed in

order to apply the empirically-derived strengths of REALGO and MISA to our operators

of evaluation, selection and mutation. We conclude with how we intend to derive our

76

approximately optimized solution set through measurable means. Chapter 4 develops our

high level design in a more technical depth.

77

IV. Low Level Design and Implementation

Our jREMISA coding and implementation is a phased project. The end result is

one autonomously-operating algorithm that optionally communicates cooperatively with

all other computers running jREMISA, within one network segment. This chapter

presents the implementation of the high-level Java design and specification details from

Chapter 3. Section 4.1 begins with the hardware and software required to perform this

software development. Section 4.2 explains the source code migration from C to a

prepared software design architecture in Java. Section 4.3 details the signature design,

generation of Ab chromosome arrays and the array encoding of the incoming data set

Ags. Section 4.4 provides pseudocode for all the major functions and evolutionary

operators of jREMISA. Section 4.5 explains the distributed communication protocol and

transmission methodology of Abs to the subnet of listening jREMISAs. Section 4.6

explains how post-execution data is properly ordered into a saved XML file for graphical

analysis and potential future re-use.

The first phase of software implementation involves acquisition and conversion of

the existing C programs, REALGO and MISA, into their Java equivalent, jREALGO and

jMISA. The second phase involves the integration of the two unrelated Java programs

into a single Java program called jREMISA. Once validated for identical output,

described in Section 5.2, jREALGO and jMISA’s exclusive strengths are merged into a

single Java program. The third phase involves tailoring the program to fit the data

structure of the real-world data set. Once jREMISA can successfully process external

78

data files, the fourth and final phase incorporates the distributed component, which

facilitates AIS broadcasting of its nondominated Abs among the other AIS’ within the

LAN.

4.1 Hardware and Software Requirements

C language analysis and runtime debugging of REALGO and MISA is performed

in the Microsoft Visual Studio 2005 Integrated Development Environment (IDE) while

Java programming and runtime debugging of jREALGO, jMISA and jREMISA was

performed in the Eclipse6 open-source IDE (see Appendix D.3 for source code

explanation and hierarchy). To minimize Java execution overhead, compiled Java

projects are exported to a self-contained Java Archive File (JAR), executed independently

of Eclipse, requiring only the Java Virtual Machine (JVM) to be running. Therefore, this

program may be executed on any hardware platform running the JVM.

4.2 REALGO and MISA C-To-Java Language Translation

Because of the growing popularity [Java04], global ubiquity and customer (i.e.,

DoD) utilization of Java, both REALGO and MISA were converted in Java equivalents

jREALGO and jREMISA, respectively, facilitating OS extensibility and flexibility into

existing and future customer Java systems. Both REALGO and MISA C language source

files were acquired directly from their respective authors and their Java-based derivative

are coded to be executed against the same test functions as their C parent.

6 The Eclipse Project, http://www.eclipse.org.

79

Translating REALGO to the Java-based program jREALGO was straightforward

because REALGO’s signature data structure is a simple bit string array, as Java favors

objects over pointers. Translating MISA to the Java-based program jMISA was more

difficult due to MISA’s chromosome’s data struct(ure) simply including a pointer to the

next chromosome. Hence, C’s singly-linked bit string chromosomes became an awkward

object-linked Java implementation. In addition, for testing purposes, we “retro-coded”

both C programs with a nanosecond-precision timer, made possible with Microsoft

Windows’ Application Programming Interface (API) system calls (see Appendix D.4).

During the translation process, software engineering principles and design patterns were

incorporated, including one of the earliest, the Model-View-Controller, in order to

minimize the learning curve for understanding our software development methodology.

4.2.1 The Model-View-Controller Paradigm

Both REALGO and MISA programs are packaged as the typical “single .C source

file with included .H header files.” All parameter values are “hard-wired” into the code,

mixing business logic, the functions that operate on the program’s values, with program

state, the current value of all parameters defined in the program. From a software

engineering standpoint, this maximizes the difficulty level, learning curve and time

required of program modification and minimizes software flexibility. Employing the

Model-View-Controller (MVC) paradigm during the code conversion—one of the earliest

known software engineering patterns—helps mitigate this problem (Figure 21).

80

Figure 21: Model-View-Controller architecture [Halloran05]

Per Freeman and Freeman, the model “holds all the data, state, and application

logic. The model is oblivious to the view and controller, although it provides an interface

to manipulate and retrieve its state and it can send notification of state changes to

observers” (which the view identifies itself as). The view “gives you a presentation of the

model. The view usually gets the state and data it needs to display directly from the

model.” And the controller “takes user input and figures out what it means to the model”

[FF04]. In Figure 21, the arrows represent associated between these Classes: the view

(i.e., “textui”) is aware of the controller (and model, if required) and the controller is

aware of the model (and persistence), but not vice-versa. In this way, the classes can be

interchanged with little to modification of the other classes. For example, jREMISA can

be fitted with any GUI without changing the controller or model.

81

Following this paradigm, C source and header file code are separated into four

distinct Java project packages:

1. view: the graphical user interface (GUI), allowing dynamic parameter selection;

2. model: the Java objects that hold state information about the algorithm;

3. controller: the mediator that accepts user input (from the GUI) and manipulates

state information in the model;

4. persistence: objects responsible for file input-output, such as reading in a data set

file and saving a surviving population into an eXtensible Markup Language

(XML) file.

By incorporating the MVC architecture, we have separated the concerns of all files within

the Java project. This results in a minimal learning curve and a minimal cost from

modification or replacement of any Java class within the project packages.

4.3 Data Signature Design

Per Section 3.6.1, jREMISA employs the bit string data structure, chosen by both

REALGO and MISA. Both Abs and Ags are composed of fixed-length integer array

chromosomes where allele (dimensional) values that define the point’s location in the

search space are binary and Ab parameter information is of integer value. Ab length is

dictated by the Ag length and both signatures are generated in different ways. We begin

this discussion with Ag encoding, as this drives Ab generation.

82

4.3.1 Antigen Data Set Encoding

The Abs for network intrusion are generated and trained in the same manner as in

anti-virus detectors [HWGL02]. However, network intrusion Ags are longer and

segregated because they utilize the IP packet structure for its template. For this reason,

we constrain our ID domain to encode Ags from network packets wrapped in the three

most common IP protocols: TCP, UDP and ICMP. The encoding process is made

possible by a Java class called DumpPro, courtesy of SSFNet7. This class simply reads in

each byte of a binary network traffic file, such as one generated by tcpdump8, and outputs

the decimal values of the various IP fields. This class is modified to pre-determine

whether the packet was TCP, UDP or ICMP, convert all header fields’ decimal values to

binary and contiguously concatenate those bit strings into the chromosome that represents

the packet header. jREMISA has the flexibility to construct these chromosomes based on

user-selected IP, TCP, UDP and ICMP header fields, allowing dynamic re-shaping of the

search landscape. Because different authors subjectively choose their chromosome’s bit

length, as Section 3.1 explained, we must first consider the components of the IP packet,

as this determines the length. The user begins jREMISA by selecting the IP, TCP, UDP

and ICMP header fields they wish to be evaluated in the search landscape, as shown in

Figure 22 for the Massachusetts Institute of Technology (MIT)-Defense Advanced

Research Projects Agency (DARPA) 1999 Intrusion Detection data set [MITDARPA99]

7 Scalable Simulation Framework (SSFNet): a clearinghouse for information about the latest tools for
scalable high-performance network modeling, simulation, and analysis, http://ssfnet.org.
8 tcpdump: network traffic packet analyzer, http://www.tcpdump.org.

83

and Figure 23 for the University of California-Irvine 1999 Knowledge Discovery in

Databases (KDD) Cup data set [KDD99]. By default, all fields are chosen.

Figure 22: jREMISA’s MIT-DARPA chromosome construction menu

Figure 23: jREMISA’s KDD Cup 99 chromosome construction menu

84

While we ideally wish to evaluate all fields, there is a productivity tradeoff

between the number of fields chosen and resulting chromosome length. For example,

selecting more fields may increase classification effectiveness but certainly increases the

search space universe and decrease efficiency. Conversely, fewer fields chosen may

reduce the number of non-self detected but also the size of the universe, increasing

efficiency.

IP Packet Background

The IP packet, shown in Figure 24, has a standardized format where the header is

composed of five (rows of) 32-bit words, accounting for 20 bytes [Stevens94]. In the first

word (or row), subtracting total length from header length results in knowing the payload

start byte position (with, obviously, the total length, itself, denoting the end byte). In the

second word, the identification field uniquely identifies each IP datagram sent by a host,

which increments by one each time a datagram is sent. In the third word, time-to-live sets

an upper limit on the number of routers a packet can pass through before being dropped;

hence, a lifespan. The protocol byte is critical in determining which population to route

this encoded packet to, as it denotes which protocol (i.e., TCP=6, UDP=17, ICMP=1)

gave the data for IP to send. Beyond the header (beginning the 21st byte), the appropriate

IP-wrapped protocol packet composes the IP data field, based on the value of the protocol

byte. The last two words are the decimal value of the packet’s IP source and destination

address.

85

Figure 24: IP datagram packet [Stevens94]

If the IP protocol byte value equals six, then we conclude this IP packet is more

specifically a TCP/IP—or “TCP over IP”—packet; in other words, the 21st byte of this IP

packet is the first byte of the TCP header. The TCP packet, shown in Figure 25, also has

a fixed header of 20 bytes with a variable byte-size payload. The first word contains the

port (or service) number of this packet. The second word assists in ensuring TCP packets

are read in the correct order received as sent, as packets can traverse varying routes and

arrive at different times, possibly out of order. The third word is the value of the second

word plus one, sent back to the original sender, confirming to that sender his packet was

received. In the fourth word, subtracting this TCP header length and IP header length

from the IP total length yields the TCP payload size and starting byte. The six Boolean

flag bits, URG, ACK, PSH, RST, SYN and FIN assist in packet control and connection

setup and teardown.

86

Figure 25: TCP packet [Stevens94]

If the IP protocol byte value equals 17, then we conclude this IP packet is more

specifically a UDP/IP—or “UDP over IP”—packet; in other words, the 21st byte of this

IP packet is the first byte of the UDP packet (Figure 26). This protocol’s header is only

eight bytes because it doesn’t require (i.e., it’s not responsible) for ensuring successful

end-to-end transmission (or stateful session)—this is a “fire and forget” stateless

protocol. The first word contains the source and destination ports. In the second word, we

are concerned only with half-word UDP length, as subtracting this from the UDP header

length yields the UDP payload size and start byte.

87

Figure 26: UDP packet [Stevens94]

If the IP protocol byte value equals one, then we conclude this IP packet is more

specifically a ICMP packet; in other words, the 21st byte of this IP packet is the first byte

of the ICMP packet, shown in Figure 27. In the first word, the first two bytes determine

the type of message this is, which is detailed after the first word for a variable size.

Figure 27: ICMP packet [Stevens94]

Each component selected for the Ag is individually encoded from decimal into a

binary gene—a building block or subset of bits of our chromosome. All genes

contiguously aligned by order of field compose one Ag chromosome. This idea of Ag

88

encoding came from Harmer and Williams whose chromosome length was 320 bits,

leaving the trailing 11 bits for payload consideration [HWGL02, Williams01]. Our

encoding scheme differs by disregarding payload, several IP and TCP fields and the

validity bit, yielding Ags ranging in size between 138-240 bits, depending on the

underlying protocol (Table 3).

Gene

Field Possible
Values

Start
Loc

Gene
Bits

Comment

IP Field: Common to all packets
1 IP overall packet

length
0-65535 0 16

2 datagram
identification number

0-65535 16 16

3 3-bit flag & 13-bit
fragment offset

0-65535 32 16 Values 2, 4 possible and legal; all
others suspect [Williams01]

4 time-to-live (TTL) 0-255 48 8
5 Protocol type 1 (TCP),

2 (UDP),
3 (ICMP)

56 2 “0” corresponds to IP packets not
of the underlying TCP, UDP, or
ICMP protocol; by forcing TCP=1
(originally 6), UDP=2 (originally
17) and ICMP=3 (originally 1), we
shorten number of bits from 8 to 2

6 IP Src Address A octet 0-255 58 8
7 IP Src Address B octet 0-255 66 8
8 IP Src Address C octet 0-255 74 8
9 IP Src Address D octet 0-255 82 8
10 IP Dst Address A octet 0-255 90 8
11 IP Dst Address B octet 0-255 98 8
12 IP Dst Address C octet 0-255 106 8
13 IP Dst Address D octet 0-255 114 8

TCP Fields
T14 TCP source port 0-65535 122 16
T15 TCP destination port 0-65535 138 16
T16 TCP Sequence number 0-

4294967295
154 32

T17 TCP Ack number 0-
4294967295

186 32

T18 TCP URGent flag 0-1 218 1 1 = set, 0 = not set
T19 TCP ACK flag 0-1 219 1
T20 TCP PuSH flag 0-1 220 1
T21 TCP ReSeT flag 0-1 221 1
T22 TCP SYN flag 0-1 222 1

89

T23 TCP FINish flag 0-1 223 1
T24 TCP window size 0-65535 224 16
 TCP data 240 Not currently used

UDP Fields
U14 UDP Src port 0-65535 122 16
U15 UDP Dst port 0-65535 138 16
U16 UDP length 0-65535 154 16
 UDP data 170 Not currently used

ICMP Fields
I14 ICMP type 0-255 122 8
I15 ICMP code 0-255 130 8
 ICMP checksum 0-65535 138 16 Variable, depending on type and

code; not currently used
 ICMP data Not currently used

Table 3: Antibody signature design [adapted from HWGL02]

An example of an encoded TCP DNA Ag chromosome is depicted in Figure 28.

Here, all IP and TCP fields have been selected, resulting in a 240-bit chromosome, which

dictates the initialized TCP Ab population to be of fixed length 240 bits, as well.

1001110001110011001

IP encoded gene #1-13 = 122 bits

Packet length (16b) Dst. Addr. D-octet (8b)…

TCP encoded gene #T14-T24 = 118 bits

Src port (16b) Window size (16b)…

Figure 28: Example encoding of a IP and TCP header to form a TCP DNA chromosome

4.3.2 Antibody Population Generation

When Ag chromosome encoding is determined, the fixed-length TCP, UDP and

ICMP Ag are known: a TCP Ag = |IP| + |TCP|, a UDP Ag = |IP| + |UDP| and a ICMP Ag

= |IP| + |ICMP|. These three values, along with the user-defined size of the TCP, UDP

and ICMP Ab populations, provide the information required to perform Ab initialization.

90

Three individual Java ArrayLists, representing the population pools, are instantiated to

hold each created Ab integer array. An Ab is composed of three contiguous parts:

1. its chromosome of binary values, defined through negative selection;

2. its RNA memory, initialized to zero;

3. seven parameters that define the state of the Ab, all initialized to zero:

λ name (integer identifier);

α number of false detections;

ρ (true positive + true negative) fitness score;

φ (false positive + false negative) fitness score;

η deviation from negative selection-defined affinity threshold (determining

 volume);

β broadcasted (0=no, 1=yes; only happens once in its lifetime);

ψ number of Abs that Pareto-dominate this Ab.

When Abs are first generated at negative selection, their data structure is only the

first part—its chromosome—because the RNA memory and parameters serve no purpose.

These latter two parts are attached to each Ab upon loading them into their respective

populations for post-negative selection evaluation. An example of a TCP Ab

chromosome is shown in Figure 29. Here, this Ab’s RNA matches its chromosome, is

named “3”, has two false detections, a true detection fitness of 38, a false detection

fitness of 126, an affinity shrinking of 2%, has been broadcasted and is dominated by two

other Abs.

91

Parameters = 7 array elementsAb DNA = 240 elements
RNA copy of Ab =

240 elements

Random binary values

= 1= 3 = -2= 38 = 126= 20 = 210110010110 α βφ η ψλ ρ

Figure 29: Example 240 bit (487-element) TCP Ab chromosome

A chromosome of length 240 is really 487 elements long because the RNA is the

same length as the DNA and then eight state parameters follow. This does not result in

additional computational cost as only the DNA is ever computed upon, allele by allele.

4.4 AIS-Inspired MOEA Pseudocode

Section 3.3 introduced the layered complexity involved in designing an AIS-

inspired MOEA. Figure 30 has been adapted from Timmis’ AIS abstract model (from

Section 2.3) to represent jREMISA’s integration. The foundation is based on the ID

domain, facilitated by the data set introduced in Chapter 5.3. Ab and Ag data structure is

the integer array, where the DNA and RNA is composed of zeros and ones and the

parameters are signed integer values. Our affinity measure is Hamming distance. The

immune algorithm employed is an integration of REALGO and MISA operators, minus

recombination, within a Bäck EA ordering.

92

ID Data Set

Fittest Ab Detector Set

1 0 1 1 1 0 0 01 0
Binary Ab/Ag Chromosome

Hamming Affinity Measure

Immune Algorithm: Bäck’s EA
1
0

1
{ i i

l
if Ab Ag

i i otherwise
i

H whereδ δ ≠

=

= =∑

jREALGO

jMISA
omit

Figure 30: jREMISA applied to Timmis’ AIS abstract model

This defined framework provides enough information to map our operators into

an ordered sequence, depicted in Figure 31, subsequently enabling pseudocode to be

generated, as shown in Algorithm 3. This algorithm changes the order of Bäck’s EA

within the while loop by placing evaluation first instead of last. This is due to the

influence of the original MISA algorithm order. While Algorithm 3 shows jREMISA as a

single algorithm of execution, jREMISA actually executes in two separate phases: “Phase

I: negative selection” (Algorithm 3, lines 3-7) and “Phase II: core MOEA” (Algorithm 3,

lines 8-19), because while both operations compose the MOEA, jREMISA halts upon

completion of the first phase. This action allows the jREMISA operator to consider if the

trained-and-immature population is worthy of being input into the rest of the MOEA.

93

ETHEREAL: filter MIT-DARPA data set for only TCP, UDP, ICMP packets

jREMISA: verification function to ensure filtered data set fully parses

Pre-processor
directives

USER: define data set IP fields, initial population sizes, affinity threshold, input clean
data set filename, output population XML filename; start Negative Selection

Initial, random binary value populations generated

Secondary, “elitist 5%” external population initialized as empty

Secondary, external population initialized as empty

NEGATIVE SELECTION

Save remaining populations and genes to XML file and halt jREMISA

USER: define input population filename, input attack data
set filename, truth set, whether networking is enabled; start MOEA

Data set
evaluation
complete?

YES NO

Cauchy mutation and
affinity maturation

Perform P*-test against
surviving Abs

Select top 5% of nondominated
and least dominated Abs and

copy into secondary population

Clone secondary population
Abs equally until 600% size

Uniform mutation of clones in
secondary population

Network
mode

enabled?

Fittest Abs from secondary
population compose next

generation primary population

YES

NO

Broadcast new
Nondominated Abs

Save Ab population
and PF* to XML file

Cull all remaining dominated
from secondary population

Check container for UDP-captured
Abs; evaluate for secondary pop.

P
H
A
S
E

I

P
H
A
S
E

II

Fitness-compute incoming Ag
to Ab pool of same protocol

Figure 31: jREMISA algorithm flowchart

1 procedure jREMISA
2 begin
3 repeat
4 Randomly generate initial TCP, UDP, ICMP Populations (Pp)
5 Initialize empty secondary Population (Ps)
6 negative_selection(Pp,data_setclean,threshold) /* Evaluation 1 */
7 until (end of data_setclean)
8 repeat
9 fitness function (ag) /* evaluation_2 */
10 mutationCauchy(Pp)
11 P_optimality() /* evaluation_3 */
12 clonalSelection(0.05)
13 mutationUniform(Ps)
14 Pp Ps /* copy best of Ps as next gen’s Pp */
15 if (networking)
16 broadcast(Ps) /* offer nondominateds to other AISs */
17 processReceived() /* Any captured Abs from others? */
18 endif

94

19 until (end of data_setattack)
20 end

Algorithm 3: jREMISA pseudocode

4.4.1 Phase I: Negative Selection

Negative selection involves three parameters: the populations to train, the clean

data set that trains the populations, and the affinity threshold. The random values that

initialize the chromosome alleles are determined by Java’s native Random class. The

number of generations of execution is equal to the number of packets in the self-only data

set. Based on the affinity threshold parameter set by the user, all Abs that react to the self

Ag comparator are removed from the population, without replacement. We did this rather

than retrain the Ab through mutation because of the possibility a trained Ab may now

match at least one self Ag previously tested. Upon completion of this phase, jREMISA

halts, awaiting further input. Pseudocode for this phase is given in Algorithm 4.

1 procedure negative_selection(Pi,data_setclean,threshold)
2 begin
3 repeat
4 ag encode_Ag(data_set_packet)
5 for (i 0 to size(Pi)) /* Pi random, initial population */
6 ab Pii
7 score HammingScore(ab,ag)
8 if (score >= threshold)
9 remove(Pii)
10 endif
11 next (i)
12 until (data_set = end_of_file)
13 end

Algorithm 4: jREMISA negative selection pseudocode

95

4.4.2 Phase II: Core MOEA

This phase, given the population and several other user-defined parameters,

executes the remainder of MOEA algorithm. Per Algorithm 3, this phase performs the

fitness function, Pareto optimality, mutation, selection and nondominated Ab-

broadcasting (if enabled) upon each Ab, where the number of generations is equal to the

number of data set network packets.

Fitness Function

The fitness function (Algorithm 5) calculates the number of false detections, true

and false detection integer fitness and affinity threshold deviation value for each Ab. Our

fitness scoring method is based on the fitness scoring model conceived by Smith Forrest

and Perelson in their search for diverse, cooperative populations with GAs [SFP93] but

tailored to our MOEA. The RNA storage and reversion functions and Cauchy mutation

method are REALGO-inspired. To aid the fitness function, a Java TreeSet stores all

extracted non-self packet identifying numbers in ascending order to guide the outcome of

the Ab classification. The non-self packet determination methodology is further discussed

in Appendix B.

1 procedure fitness_function(Pi,data_set,threshold)
2 begin
3 repeat
4 ag encode_ag(data_set_packet)
5 for (i 0 to size(Pi)) /* Population of same protocol as Ag */
6 ab Pii
7 (H,HammingMask) HammingScore(ab,ag)
8 score (H / length(ag))
9 if (ag == self && score < threshold) /* true neg */

96

10 abfitness1 abfitness1 + H
11 abRNA ab
12 abthreshold abthreshold + 1
13 mutateAllele 1
14 else if (ag == non-self && H >= threshold) /* true pos */
15 abfitness1 abfitness1 + (length(ag) – H)
16 abRNA ab
17 abthreshold abthreshold + 1
18 mutateAllele 0
19 else if (ag == self && H >= threshold) /* false neg */
20 abfalseDetections abfalseDetections + 1
21 if (abfalseDetections == lifespan)
22 remove(ab)
23 break
24 end if
25 ab abRNA
26 abfitness2 abfitness2 + H
27 abthreshold abthreshold – 1
28 mutateAllele 1
29 else if (ag == non-self && H < threshold) /* false pos */
30 abfalseDetections abfalseDetections + 1
31 if (abfalseDetections == lifespan)
32 remove(ab)
33 break
34 end if
35 ab abRNA
36 abfitness2 abfitness2 + (length(ag) – H)
37 abthreshold abthreshold – 1
38 mutateAllele 0
39 end if
40 ab CauchyMutation(ab,HammingMask,mutateAllele)
41 next (i)
42 until (data_set = end_of_file)
43 end

Algorithm 5: jREMISA fitness function pseudocode

The Hamming equation serves two purposes: sum the number of complimentary

bits as Hamming score H and mark the allele positions of complementarity with a “1”

value, in what we developed as a “Hamming mask.” For any outcome, there is a penalty

97

added to the true classification (called fitness1) or false detection fitness (called fitness2)

scores involving the H value. The Hamming mask is the heuristic that mutation uses to

determine which alleles to mutate. There are four possible outcomes for each Ab, each

having a unique consequence:

1. the Ag is self and the Ab declares self (true negative):

a. add H to fitness1, penalizing one point for every allele of complementarity;

b. save DNA chromosome as its RNA for correctly classifying the Ag;

c. increment (reward) Ab’s affinity deviation by one, enlarging its volume;

d. mark the Hamming mask alleles with a “1” for Cauchy mutation because

there should not have been complementarity between two selfs.

2. the Ag is self and the Ab declares non-self (Type-II error: false negative):

a. increase the “false detections” counter by one (and remove from

population if false detection threshold reached, bypassing the remaining

operations);

b. restore Ab DNA chromosome with its RNA, as it was more effective than

this Ab’s mutation from last generation;

c. add H to fitness2, penalizing one point for every allele of complementarity;

d. decrement (penalize) Ab’s affinity deviation by one, shrinking its volume;

e. mark the Hamming mask alleles with a “1” for Cauchy mutation because

there should not have been complementarity between two selfs.

98

3. the Ag is non-self and the Ab declares non-self (true positive):

a. add opposite of Hamming score (Aglength – H) to fitness1 because there

should have been more complementarity;

b. save DNA chromosome as its RNA for correctly classifying the Ag;

c. increment (reward) Ab’s affinity deviation by one, enlarging its volume;

d. mark the Hamming mask alleles with a “0” for Cauchy mutation because

there should have been more complementarity between self and non-self.

4. the Ag is non-self and the Ab declares self (Type-I error: false positive):

a. increase the “false detections” counter by one (and remove from

population if false detection threshold reached, bypassing the remaining

operations);

b. restore Ab DNA chromosome with its RNA, as it was more effective than

this Ab’s mutation from last generation;

c. add opposite of Hamming score (Aglength – H) to fitness2 because there

should have been more complementarity;

d. decrement (penalize) Ab’s affinity deviation by one, shrinking its volume;

e. mark the Hamming mask alleles with a “0” for Cauchy mutation because

there should have been more complementarity between self and non-self.

When a Ab’s chromosome is reverted to its RNA upon a false detection, the

remaining parameters of the Ab are unchanged; in other words, parameters do not carry

when an RNA copy of an Ab is made. Having the Hamming mask and the alleles to

target now allows us to perform heuristic-based Cauchy mutation. Each Ab has its own

99

volume, defined by its threshold deviation parameter added to the negative selection-

defined affinity threshold value.

Heuristic-based Cauchy-mutation

While REALGO gives each allele a 50% chance of Cauchy mutation (see Section

3.6.3), we heuristically determine the number and position of alleles to mutate based on

our Hamming mask. As just discussed, Abs that did not have enough complementarity

are penalized for the remaining alleles not complementary (mutateAllele 0).

Conversely, Abs that should not have experienced complementarity are penalized for the

alleles that were complementary to the Ag (mutateAllele 1). Ab alleles are mutated in

this manner because the alleles that are properly complementary should not change value,

as shown in Figure 32.

the allele chosen for Cauchy mutation

0001110011001Ag
Hamming Distance
Calculation; H = 8

1011101001110

mutateAllele 01010011010111Ab

mutateAllele 11010011010111Ab
OR

Hamming Mask

1010011010111Ab

Figure 32: Allele selection process for Cauchy Mutation

100

Clonal Selection

Although the top 5% of primary population-Abs are copied into the secondary

population, with the intent of being cloned, only those Abs new to the secondary

population are cloned. The “name” parameter on each Ab enables this determination.

Upon cloning completion, Quicksort is applied to put the secondary population in

“number of Abs dominated by”-ascending order in order to minimize the time required to

copy enough of the fittest Abs from the secondary population to restore the original size

of the primary population (if required, in the event any Abs were lost from the primary

population due to excessive false detections). The selection pseudocode is shown in

Algorithm 6.

1 procedure selection(0.05,popp,pops)
2 begin
3 repeat /* Copy top 5% to secondary pop */
4 copyToSecondary(popp.get(i))
5 i i + 1
6 until (i == 0.05*size(popp))
7 numClones (size(pops)*6 / i) /* Num clones per Ab */
8 repeat /* uniformly clone Abs to 600% pops size */
9 ab popp.get(i)
10 j numClones
11 repeat
12 abc copy(ab) /* clone if new to secondary pop */
13 mutation(abc, abdominated_score)
14 copyToSecondary(abc) /* insert into pops */
15 j j – 1
16 until (j == 0)
17 mutation(ab, abdominated_score) /* mutate original ab, too */
18 i i - 1
19 until (i == 0)
20 QuickSort(pops) /* ascending sort of Abs by “dominated” score */
21 popp copyToPrimary(pops, size(popp)) /* evolution: μ λ+ */
22 i size(pops)

101

23 repeat /* Cull pops to nondom-only, no larger than primary pop */
24 ab pops.get(i)
25 if (abdominated_score > 0)
26 remove(pops,ab)
27 end if
28 i i - 1
29 until (i == 0)
30 end

Algorithm 6: jREMISA selection pseudocode

4.5 Distributed Communication Model

Our distributed communication model is based on Grama, Gupta, Karypis and

Kumar’s definition of data decomposition [GGKK03]. We partition a particular day’s

data set into c equal sizes, where c is number of computers executing jREMISA. Hence,

each jREMISA is evaluating an equal portion of the data set in a distributed island model,

broadcasting nondominated Abs to each other’s secondary population in an effort to

synergistically strengthen effectiveness in the AIS system, as a whole subnet. Hence, our

intent for pursuing distributed execution is geared more toward increasing effectiveness

than the expected c-fold increase in efficiency.

To facilitate communication, jREMISA binds to one UDP port for listening and

one for broadcasting. The listener class must spawn its own Java Runnable class thread

of concurrent execution because it blocks execution until receiving information from the

broadcast port. Each message, whether a nondominated Ab or user message, is sent in a

single UDP packet to IP address 255.255.255.255, where it is summarily broadcast to all

jREMISA listeners on the subnet, as depicted in Figure 33.

102

Data set (network traffic)
6-Port Switch/Router

jREMISA
2

jREMISA
3

UDP
listener

UDP
listener

UDP
listener

jREMISA
1

spawned
thread

Listen
port: 1986

Listen
port: 1986

Listen
port: 1986

Broadcast
port: 1987

Broadcast
port: 1987

Broadcast
port: 1987

Ab | m
essage : UDP: 255.255.255.255

Ab | message
: UDP
: 255.255.255.255

Ab | message
: UDP
: 255.255.255.255

Ab | message Ab | message

Wall-clock time

Figure 33: jREMISA distributed communication architecture

In Figure 33, jREMISA-1 sends a newly discovered nondominated Ab, wrapped

in a UDP packet, to IP address 255.255.255.255. All jREMISA listener threads capture

the message, unwrap it and send the payload content to its respective kernel, where it is

examined only after a generation ends. Ab payloads captured by the listeners are Pareto

optimality-evaluated against their secondary population and added if that Ab remains

nondominated. Abs are broadcast only once in their lifetime. Java synchronized methods

and volatile variables are employed to ensure thread-safe passage of broadcast Abs into

the dynamically-changing secondary population. Instant messages are simply received

and sent to the GUI display console. The UDP payload, depicted in Figure 34, consists of

the sender IP address, machine hostname, message type and the user message or Ab

integer array.

103

User message GUI console announcement

Ab secondary population consideration

Ab AbRNA

Message
type = 2

sender IP

(String) User MessageMessage
type = 1

sender IP

α βφ η ψλ ρ

OR

Figure 34: UDP-broadcast payload structure

4.6 Population Persistence

Software persistence involves the long-term storage of data, for future reference.

For example, volatile storage involves an algorithm’s execution and data manipulation in

memory; once power is lost or the algorithm terminates, the memory is lost. Non-volatile

storage persists data to long-term storage mediums such as hard disk and removable,

flash-memory “thumb drives.” While our algorithm outputs the Pareto optimal values at

post-execution, we desire to know the Ab data structure behind that set of values for

analysis and future ID domain employment. Our algorithm preserves post-execution

output in XML format based on the executed function:

1. NEGATIVE SELECTION: saves the user-defined data structure and trained-but-

immature Ab populations (Figure 35);

2. Core MOEA: saves the user-defined data structure, number of generations,

runtime in seconds, elitism percentage, affinity threshold, true classification rate,

false detection rate, attack graph x- and y-vectors, and each secondary

104

population’s set of Abs with accompanying Pareto Front x- and y- vectors (see

Section D.2.3, Figure 60).

Figure 35: Example XML post-negative selection file

XML files serve as a “Petri dish,” enabling population re-use. For example, if the

user wants to perform negative selection over five different data sets before applying the

attack set, the saved post-negative selection XML file can be reloaded for continued

negative selection over four additional times before specified as the input file for the

attack set evaluation. In addition, post-MOEA Petri dishes allow for trained-and-mature

population re-use in further ID domain evaluations.

105

4.7 Summary

This Chapter discusses our low-level design and software implementation plan in

order to prosecute problem domain input. The next chapter discusses the testing and

experimentation performed using this software and the analysis of our computational

results.

106

V. Experimentation and Analysis

The previous two chapters discussed the high- and low-level methodology for

complete prototype implementation. This chapter presents the experimentation and

analysis plan intended to produce results which can be evaluated against our hypotheses

objectives and other algorithms employing the same data set and experiments. Section 5.1

begins by describing our testing environment and objectives, with background on the test

functions and data sets used in facilitating these tests. Section 5.2 provides validation for

the migration of REALGO and MISA to jREALGO and jMISA. Section 5.3 validates

jREMISA against the benchmark ID data set. Section 5.4 then compares our work to

others who have applied this data set as their application domain. Section 5.5 summarizes

by reviewing the outcome of our experiments and how it impacted our hypothesis

objectives.

5.1 Experimental Objectives and Design

The purpose of these experiments is to determine if an AIS-inspired MOEA is

useful in effectively classifying network events while its Abs maintain an optimally

known hypervolume. The experimental results provide the measurements that our

hypothesis objectives require in order to declare whether our conjecture is valid. Our

experiments are divided into three parts:

1. validation of the C-to-Java algorithm migration through test functions;

2. measuring the effectiveness of jREMISA by evaluating the ID domain data set in

13 different scenarios:

107

a. 10 standalone execution scenarios, involving at least one evaluation of

each day of an entire week of attacks;

b. three distributed island model executions in a two-, three- and four-

jREMISA configuration;

3. determining jREMISA’s worth against other algorithms applied to the same

problem domain through statistical analysis.

5.1.1 Testing Environment

Algorithm evaluation is conducted in two configurations: standalone and

distributed island model, involving the following computers, which we identify by name:

1. “PC1” Dell Inspiron 710m laptop, 2.0 GHz Pentium M, Intel Centrino

processor, two GB of RAM, Windows XP Professional 2002, Service Pack 2;

2. “PC2” Dell XPS laptop, 3.4 GHz Pentium 4 Hyper-Threading processor, one

GB of RAM, Windows XP Professional 2002, Service Pack 2;

3. “PC3” Dell Precision laptop, 1.8 GHz Pentium 4 processor, one GB of RAM,

Windows XP Professional 2002, Service Pack 2;

4. “PC4” Dell Optiplex GX270 workstation, 2.6 GHz Pentium 4 processor, 512

MB of RAM, Windows XP Professional 2002, Service Pack 2.

The standalone configuration employed PC1. The distributed phase involved all four

machines connected via Category-5 network patch cables to a Cisco 4-port wireless

router transmitting at 100 mbps. In order to take advantage of as much of the machine’s

memory as possible, the Eclipse-exported jREMISA JAR is executed independent of

Eclipse in the Windows COMMAND PROMPT with the command line argument, “java –

108

XX:+AggressiveHeap –jar jREMISA.jar”. In doing this, we observed Windows Task

Manager reporting jREMISA utilizing 0.7 GB of virtual memory, 220 MB of physical

RAM and 95% CPU usage during execution.

5.1.2 Test Functions and Data Sets

In comparing one ID algorithm’s effectiveness and efficiency against others over

the same problem domain, instruments of validation must be applied that are standardized

and recognized by the scientific community in order to be accepted. Test functions are

widely accepted mathematical equations that evaluate a given input (a single or set of

values), and return how close that input came to the test function’s defined optimal

value(s), within given constraints. Competing algorithms incorporate the same test

function, allowing for an objective comparison of the output in determining the superior

algorithm. Our jREALGO and jMISA employ the same test functions as REALGO and

MISA in comparing output, described in Section 5.2.

Data sets are the opposite of test functions in that they are standardized sets of

data that evaluate the effectiveness and efficiency of an algorithm, based on standardized

statistical measures employed. ID algorithms have two well known data sets: the MIT-

DARPA Lincoln Laboratory (LL) 1999 Intrusion Detection data set [MITDARPA99] and

University of California-Irvine 1999 KDD Cup data set [KDD99]. We chose the 1999

MIT-DARPA data set corpus for its large scale and variety of context-based attacks. This

data set, formally introduced in Section 5.3, allows us to measure our algorithm’s

performance against the LL truth set and objectively compare our results against other

109

algorithms applied to this same data set. Further details on the KDD Cup 99 corpus are in

Appendix C.

5.2 C-to-Java Migration

In order to validate jREALGO and jMISA against their C-based parent programs,

the Java programs are initialized to the same parameters and test functions as their C

parent. For each of the 30 trials, the generation count of both implementations is equally

increased to ensure correlating output between both programs. Because both programs

are stochastic in nature, results vary. At the end of the 30 trials, we desire to observe Java

output that is as good as or better than the C output. The sole validating factor of this

experiment is effectiveness because duplicate results, more than execution time, is

indicative of a proper replica.

REALGO vs. jREALGO

In comparing REALGO to jREALGO, we discovered jREALGO is

approximately 11 times less efficient but slightly more effective than REALGO.

Executed 30 times between a 450 and 5000 Ab population, jREALGO appeared to

maintain a proportional loss of efficiency to REALGO (Figure 36), which we compared

simply for purposes of runtime observation.

110

Runtime vs. Generations

231.024209.471

2298.661
2540.845

0

500

1000

1500

2000

2500

3000

450 5000

Generations

Ex
ec

ut
io

n
tim

e
(m

s)

REALGO

jREALGO

B
E
T
T
E
R

Figure 36: Runtime comparison between REALGO and jREALGO

In determining effectiveness, we chose Yao and Liu’s test function (Equation 6)

that was evaluated by REALGO because it was the only one in the REALGO set of

experiments that yielded a non-zero optimal minimum score of -12569.5 [Yao97]:

1
(sin(| |))

n

i i
i

x x
=

−∑ (6)

with the landscape constrained to values ranging [-500,500].

Using Equation 6, we discovered jREALGO is slightly more effective in terms of the best

and average fit antibodies for both size populations, as graphed in Figure 37 and Figure

38. This may not be true in every trial due to the stochastic nature of the algorithms and

the fact they were executed in different programming languages, having differing random

seed generators. In terms of standard deviation, neither algorithm is better due to

111

REALGO having a worse (higher) standard deviation in the smaller population but better

(smaller) standard deviation in the larger population, graphed in Figure 39 and Figure 40.

Fitness after 450 Generations

-12570
-12565
-12560
-12555
-12550
-12545
-12540
-12535
-12530
-12525
-12520

Category

Va
lu

e REALGO

jREALGO

B
E
T
T
E
R

best average

Figure 37: Fitness comparison between REALGO and jREALGO: 450 generations

Fitness after 5000 generations

-12568.4

-12568.2

-12568

-12567.8

-12567.6

-12567.4

-12567.2

-12567

-12566.8

Category

Va
lu

e REALGO

jREALGO

B
E
T
T
E
R

best average

Figure 38: Fitness comparison between REALGO and jREALGO: 5000 generations

112

Standard Deviation vs. Generations

0

10

20

30

40

50

60

70

80

90

450

Generations

St
an

da
rd

 D
ev

ia
tio

n
REALGO
jREALGO

B
E
T
T
E
R

Figure 39: Standard deviation comparison between REALGO and jREALGO: 450
generations

Standard Deviation vs. Generations

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

5000

Generations

St
an

da
rd

 D
ev

ia
tio

n

REALGO
jREALGO

B
E
T
T
E
R

Figure 40: Standard deviation comparison between REALGO and jREALGO: 5000
generations

Therefore, due to the effectiveness of jREALGO, we conclude its migration from

C to be validated.

113

MISA vs. jMISA

In comparing MISA to jMISA, we discovered jMISA to be initially four times

less efficient than MISA but that in the larger population, its factor of ineffectiveness

decreased to a factor of 3.4, as graphed in Figure 41. In comparing the best, average and

worst runtimes of both algorithms for both population sizes in Figure 42, we discovered

the runtime deltas to be constant between best, average and worst, and that jMISA’s

factor of inefficiency slightly drops for the larger population.

MISA Runtime Comparison

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Trial

R
un

tim
e

(m
s) MISA 12k

jMISA 12k

MISA 20k

jMISA 20k

B
E
T
T
E
R

Figure 41: Runtime comparison between MISA vs. jMISA

114

MISA 1st-order Statistical Analysis

0
200
400
600
800

1000
1200
1400
1600
1800
2000

MISA 12k jMISA 12k MISA 20k jMISA 20k

Algorithm and generation count

R
un

tim
e

(m
s)

Best
Average
Worst

B
E
T
T
E
R

Figure 42: Statistical runtime comparison between MISA and jMISA

Test functions for MOEAs are more complex, as they require at least two

variables. Hence, MISA used the Kita-proposed function [Kita96]:

2
1

2

(,) ,
1(,) 1
2

f x y x y

f x y x y

= − +

= + +
 (7)

with constraints

1 13 1 15, 0, 0 , 0 , 0 5 30
6 2 2 2

x y x y x y x y≥ ≥ + − ≥ + − ≥ + − .

MISA and jMISA’s vector of known Pareto Front solutions, along with the MISA

author’s true Pareto Front value set, were input into MATLAB9 which plotted the Fronts

9 MATLAB ® a high-level language and interactive environment that enables
you to perform computationally intensive tasks faster than with traditional programming languages such as
C, C++, and Fortran, http://www.mathworks.com/products/matlab/.

115

depicted in Figure 43. The genotype space of both MISA and jMISA exhibit the same

concave shape and appear to share the space of the true Pareto Front.

BETTERBETTER

Figure 43: Plotted MISA, jMISA known Pareto Fronts and MISA’s true Pareto Front

With all three data sets sorted in descending order, Euclidian distance calculation is

applied to each MISA and jMISA solution point and the true Pareto Front point closest

to it, as shown in Figure 44. Here, MISA has the preponderance of Abs with shorter

distance to the true Pareto Front but jMISA possesses the few closest (shortest distance

to the Front) points.

116

BETTER

Figure 44: PFknown vs. PFtrue point Euclidian-distance differential between MISA and
jMISA

Based on the genotype similarly of both algorithms known Pareto Front,

combined with the jMISA’s shorter distance to the true Pareto Front, we conclude the

jMISA program to be effective and validated.

5.3 1999 MIT-DARPA ID Data Set Evaluation

Data sets composed of simulated computer network traffic are currently the only

available way of emulating a distributed computing environment containing both self and

non-self events. The MIT-DARPA ID evaluation took place in both 1998 and 1999. LL

coordinated with DARPA and the Air Force Research Laboratory (AFRL) to develop

117

several weeks’—five days per week—worth of raw TCP dump network traffic on the

scale of a notional Air Force Base.

jREMISA was evaluated against the 1999 over the 1998 data set specifically

because of the former’s upgrade to allow for detection of new attacks without first

training on instances of the attacks [Lippmann00]. This was made possible through the

inclusion of two weeks of self-only data, enabling jREMISA to perform negative

selection. The intent of the self-only data sets is for ID systems to train against the clean

sets and use that knowledge to effectively discover attack packets within the attack data

sets, as explicitly recommended by LL [MITDARPA99].

Our algorithm uses the first two weeks of the 1999 corpus: the first week of self-

only traffic to negative-select our Abs and the complete second week of insider-only

labeled attacks to evaluate the effectiveness of our trained Abs. In evaluating jREMISA

against the second week attack landscape to the fullest extent possible, we dissected as

many of the IP header (context)-based labeled attacks as possible (i.e., a DoS packet

sequence over a user-typed telnet exploit). This extraction methodology, explained in

Appendix B, allowed us to procure jREMISA truth tables for 16 of the 43 LL-labeled

attacks, covering all five days. When mapped to the “1999 week-two insider” landscape

in Figure 45, we see attacks to be fairly distributed in both time of day and day of week,

varying in size of packets, as detailed in Table 4. Figure 46 provides the trend of total

event activity to non-self activity, for each day of the week.

118

In summarizing the domain breakdown and analysis of this week’s data set (see

Appendix B):

1. all five days of week-1’s clean data sets, filtered for TCP, UDP and ICMP

constitutes 7,810,861 packets (for negative selection training);

2. all five days of week-two’s labeled attacks constitutes 7,275,137 packets;

3. all five day’s files filtered for TCP, UDP and ICMP packets constitutes 7,199,540

packets (99.0% of the data set being jREMISA-evaluated);

4. 16 of the 43 (37.2%) attacks were successfully dissected for Chapter 5 testing;

5. of the 16 identified attacks, 53653 (0.745%) total non-self packets exist within the

entire week’s search space where 676 (1.26%) events are ICMP and the

remaining 52,977 (98.7%) events are TCP.

Time
[0800-0600)

Day
[Mon-Fri]

8-12 Mar 99

#2

#5

#7

#8

#10
#17

#18

#22

#23

#25

#26

#29

#35

#36
#37

#42

LEGEND

non-self events

Figure 45: MIT-DARPA “1999 week-two insider” attack data set landscape with LL-
labeled attacks

119

Attack
ID

Attack
Name

Protocol Wall-Clock Time Elapsed Number
Non-Self

Mon, 3/8/99: 1,737,455 total events: 8 TCP, 241 ICMP (0.0143%) non-self events
Attack day Ag ratio: 3.21% TCP, 96.79% ICMP

2 pod ICMP fragmented 08:50:11 – 08:50:12 241
5 land TCP 15:57:07 1
7 ps attack TCP – FTP 19:09:06 – 19:09:18 7

Tues, 3/9/99: 1,571,748 total events: 1552 TCP (0.0987%) non-self events
Attack Day Ag ratio: 100% TCP

8 portsweep TCP [FIN] 08:44:13 – 09:11:10 1030
10 back TCP – HTTP 10:07:30 – 10:09:30 522

Wed, 3/10/99: 995,235 total events: 15,512 TCP (1.5586%) non-self events
Attack day Ag ratio: 100% TCP

17 satan TCP [SYN] 12:02:18 – 12:04:33 10504
18 mailbomb TCP – SMTP 13:44:10 – 13:54:06 5004
22 crashiis TCP - HTTP 23:56:00 – 23:56:06 4

Thurs, 3/11/99: 1,547,709 total events: 20,462 TCP (1.3221%) non-self events
Attack day Ag ratio: 100% TCP

23 crashiis TCP – HTTP 08:04:01 – 08:04:08 4
25 portsweep TCP 09:33:09 – 09:33:12 10056
26 neptune TCP [SYN] 11:03:51 – 11:07:16 10401
29 land TCP – SMTP 15:46:46 1

Fri, 3/12/99: 1,347,393 total events: 15,443 TCP, 435 ICMP (1.178%) non-self events
Attack day Ag ratio: 97.26% TCP, 2.74% ICMP

35 pod ICMP fragmented 09:18:11 – 09:18:12 435
36 neptune TCP [SYN] 11:20:10 – 11:23:35 10381
37 crashiis TCP - HTTP 12:40:09 – 12:40:16 4
42 portsweep TCP [SYN] 17:13:02 – 17:25:04 5058

Table 4: MIT-DARPA “1999 week-two insider” attack analysis

120

MIT-DARPA 1999 Week-Two Insider
Landscape Quantification

995235

1547709
1347393

1737455
1571748

158782046215512

1552249
0

200,000
400,000
600,000
800,000

1,000,000
1,200,000
1,400,000
1,600,000
1,800,000
2,000,000

Mon,
3/8/99

Tues,
3/9/99

Wed,
3/10/99

Thurs,
3/11/99

Fri,
3/12/99

Day

Ev
en

ts
 (p

ac
ke

ts
)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000

Total
(left axis)
Non-self
(right axis)

Figure 46: MIT-DARPA “1999 week-two insider” landscape quantification

All experiments performed involved all possible fields of the TCP, UDP, and

ICMP headers, to fully evaluate our pattern-matching effectiveness. This means each

TCP Ag was 240 bits, each UDP Ag was 170 bits and each ICMP Ag was 138 bits long.

5.3.1 Negative Selection Results

Our intent in testing various negative selection scenarios is to determine the

optimal MOEA Ab population sizes and affinity threshold in order to maximize search

space coverage without impinging upon self points in the attack-labeled evaluation. This

raises the obvious question, “what is considered an optimal affinity percentage?” Our

research did not find any case studies focused on determining a statistically validated

percentage; hence, we start by randomly choosing equal starting population sizes and an

affinity threshold and then adjust, accordingly, until we have post-execution TCP

121

populations similar in size to each of the Ab sets chosen by Williams in his Warthog

experiments that evaluate this same data set: 32, 64, 128, 256, 512, 1024 and 2048 Abs.

[Williams01].

Because we expect attrition and desire the largest surviving population to be at

least at large as Williams’ largest Ab set of 2048, we initialize all three of our populations

to the next base-two power of 4096 in order to result in a post-execution TCP population

size of at least 2048. We choose Friday to perform this negative selection gauging

because of all five days of the self-only week, Friday represents the closest average data

set size of a single day, per Table 5. In observing surviving population rates for the first

time, Table 6 (graphically depicted in Figure 47) shows the range of feasible affinity

threshold values until the TCP population is empty: between 37-44%.

User-required parameters for executing negative selection can be found in the

jREMISA user manual (see Appendix D.2.2).

Day Generations
Monday 1,477,462
Tuesday 1,222,696

Wednesday 1,710,945
Thursday 1,931,983

Friday 1,467,775
Table 5: Number of generations for each day of the 1999 week-one insider self-only

traffic (filtered for TCP, UDP, ICMP only)

122

Affinity (%) Runtime(mins) End TCP survived End UDP survived End ICMP survived
37 186.65 2663 65.015% 3737 91.235% 3707 90.503%
38 124.20 1563 38.159% 3372 82.324% 3513 85.767%
39 89.17 935 22.827% 2890 70.557% 3290 80.322%
40 45.27 357 8.716% 2275 55.542% 2700 65.918%
41 26.43 126 3.076% 2000 48.828% 2344 57.227%
42 16.28 34 0.830% 1431 34.937% 1997 48.755%
43 7.48 3 0.073% 808 19.727% 1259 30.737%
44 6.22 2 0.049% 618 15.088% 978 23.877%
45 4.10 0 0.000% 305 7.446% 472 11.523%
46 3.53 0 0.000% 135 3.296% 325 7.935%
47 2.90 0 0.000% 68 1.660% 184 4.492%
48 2.62 0 0.000% 29 0.708% 45 1.099%
49 2.42 0 0.000% 8 0.195% 36 0.879%
50 2.13 0 0.000% 1 0.024% 6 0.146%
51 2.13 0 0.000% 1 0.024% 5 0.122%
52 2.13 0 0.000% 0 0.000% 3 0.073%
53 2.12 0 0.000% 0 0.000% 0 0.000%

Table 6: Post-negative selection analysis of TCP, UDP, ICMP populations starting at
4096 against the Friday self-only data set of 1,467,775 packets

Negative Selection Attrition Rate in 1,467,775 generations (Friday);
TCP/UDP/ICMP populations = 4096 Abs

0

500

1000

1500

2000

2500

3000

3500

4000

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Affinity Threshold (%)

Su
rv

iv
in

g
(T

ra
in

ed
) A

nt
ib

od
ie

s

EndTCP
EndUDP
EndICMP

Figure 47: Negative selection attrition rate in 1,467,775 generations (Friday) with TCP,
UDP and ICMP starting at 4,096 untrained Abs

123

In Figure 47, the TCP population attrits significantly quicker than the other two

populations because, per Appendix B, TCP traffic quantitatively dominates the

landscape. Figure 48 depicts the balance between the affinity threshold and runtime for

each population starting with 4096 Abs. Conducting 30 runs for comparison and

accuracy, we discovered a variance between ± 4% between runs, depicted by the bars

within each point.

Affinity Threshold vs. Negative Selection Runtime for TCP,UDP,ICMP = 4096 in
1,467,775 generations (Friday)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Affinity Threshold (%)

R
un

tim
e

(m
in

s)

Figure 48: Affinity threshold vs. negative selection runtime for TCP, UDP, ICMP = 4096
untrained Abs in 1,467,775 generations (Friday)

Following negative selection, the trained population XML file is loaded into the

core MOEA procedure of jREMISA, with several new required parameters defined (see

Section D.2.3) including setting the elitism selection percentage to 5%, per [CC05].

124

5.3.2 Standalone MOEA Results

Our intent in testing the core MOEA is to determine if a protocol-segregated

population manipulated by the validated strengths of REALGO and MISA can effectively

detect and classify a high percentage of self and non-self traffic over the entire week’s

attack data set and disclose a patterned hypervolume of such effective detectors. For each

day of the attack week jREMISA evaluates, it employs the negative selection-trained

population of only that same day of the clean week, verses a trained population over the

entire clean week.

While the MOEA is executing, real-time updates of the classification rates,

primary and secondary population size and generation count are performed. Upon

completion, output is saved to an XML file, for analysis (see Appendix D.2.3). The

results of all MOEA experiment scenarios are summarized in Table 7 and Table 8. These

tables provide the overarching results of executions based on the data set, affinity

threshold, and negative selection-survived populations. Our standalone testing

methodology is to perform two tests in the following order:

1. determine optimal Ab affinity threshold value based on day’s false detection rate;

2. use that threshold value in performing the standalone and distributed test

scenarios.

In Table 7, we perform 10 scenarios. The first six are meant to determine the affinity

threshold we should choose from our feasible range to evaluate all days of the week

based on the lowest false detection rate of the Thursday data set. We use the Thursday

data set because it’s the same data set Williams used in his Warthog evaluations

125

[Williams01]. Results of the first six scenarios conclude the lowest false detection rate

when the threshold is at 39%. Hence, scenario four is compared against seven through 10,

using that benchmark threshold, in comparing each day to each other. The distributed

experiments performed (in Table 8) in the last three scenarios also use this benchmark.

 Self
Events

Non-self
Events

Scen-
ario

Day Gener-
ations

Affinity
Threshold

TCP
Pop

UDP
Pop

ICMP
Pop

Runtime

True
Neg%

False
Neg%

True
Pos%

False
Pos%

1 Thurs 1547710 42% 37 86 248 39.12 m 53.78 46.22 62.6 37.4
2 “ “ 41% 106 116 284 52.48 m 67.44 32.56 68.33 31.67
3 “ “ 40% 315 146 341 3.61 hrs 76.10 23.90 76.92 23.08
4 “ “ 39% 966 361 810 18.21hrs 85.45 14.55 97.66 2.34
5 “ “ 38% 1580 423 881 2.36 days 86.48 13.52 92.51 7.49
6 “ “ 37% 2564 462 927 5.83 days 82.52 17.48 99.71 0.29
7 Mon 1737455 39% 969 349 846 20.02 hrs 85.36 14.64 99.90 0.10
8 Tues 1571748 “ 922 362 882 18.86 hrs 84.61 15.39 97.35 2.65
9 Wed 995235 “ 920 333 798 11.69 hrs 83.37 16.63 98.26 1.74
10 Fri 1347393 “ 964 376 829 13.43 hrs 83.59 16.41 96.57 3.43

Table 7: MOEA run summary: single jREMISA (highest effectiveness in bold text)

 Self
Events

Non-self
Events

jREMISA
machine ID

Packet range
(1547709 total)

TCP
Pop

UDP
Pop

ICMP
Pop

Runtime

True
Neg%

False
Neg%

True
Pos%

False
Pos%

Scenario 11: 2 jREMISAs, 39% affinity threshold, Thursday attack data set
PC1 1 – 773854 966 361 810 9.44hrs
PC2 773855 – 1547709 936 344 854 9.63hrs 86.21 13.79 98.10 1.90

Scenario 12: 3 jREMISAs, 39% affinity threshold, Thursday attack data set
PC1 1 – 515903 966 361 810 5.09hrs
PC2 515904 – 1031807 936 344 854 6.35hrs
PC3 1031808 – 1547709 951 357 826 6.86hrs

84.31 15.69 97.94 2.06

Scenario 13: 4 jREMISAs, 39% affinity threshold, Thursday attack data set
PC1 1 – 386927 966 361 810 4.33hrs
PC2 386928 – 773854 936 344 854 4.63hrs
PC3 773855 – 1160781 951 357 826 4.86hrs
PC4 1160782 – 1547709 954 360 822 5.09hrs

84.94 15.06 98.55 1.45

Table 8: MOEA run summary: distributed jREMISA against Thursday data set (highest
effectiveness in bold text)

126

Figure 49 graphically maps Table 7’s summary of jREMISA standalone

classification effectiveness for each day of the attack week, with a ± 1% variance, as a

result of multiple test runs.

Standalone Correct Classification rate of
MIT-DARPA 1999 week-two insider attack data set

99.9

85.36 84.61

97.35
98.26

83.37

97.66

85.45
83.59

96.57

80
82

84
86

88
90
92

94
96

98
100

Correct Self Correct Non-self

Classification Type at 39% Affinity Threshold

C
or

re
ct

 C
la

ss
ifi

ca
tio

n
R

at
e

(%
)

Mon
Tue
Wed
Thr
FriB

E
T
T
E
R

Figure 49: Standalone effectiveness against each day of the MIT-DARPA 1999 week-two
insider attack data set (39% affinity threshold)

Having the overarching effectiveness results of the population, as a while, we now

examine the effectiveness of the individual Ab detector. Figure 50 graphically depicts the

fitness of the individual Ab detectors from the secondary tri-populations starting from a

39% affinity threshold for all Abs. Because our MOP seeks the global minimum, we

desire a C-shaped boundary as close to [0,0] as possible. jREMISA maps each Abs’

correct classification fitness score and affinity threshold deviation value into an x,y-point,

respectively. These two vectors are input into MATLAB for plotting10. These Pareto

10 To graph secondary population Pareto Fronts into MATLAB, copy the XML file’s secondary population
“Pareto-X” and “Pareto-Y” set of values into MATLAB variables x=[<Pareto-X>] and y=[<Pareto-Y>] and
then type “plot(x,y,’d’)”.

127

Fronts are important for the decision-maker in selecting the most optimally sized Abs

with the best fitness for future ID application.

Two patterns are seen among almost all populations at the end of each day’s

evaluation:

1. the Pareto Front includes Abs in +4% or +5% deviation 73% of the time;

2. Abs are concentrated at the +4% or +5% deviation value 87% of the time.

Table 7 determined our most accurate classification to be when affinity threshold was

initialized at 39%. Figure 50(a-o) depicts a pattern of Pareto Fronts and Ab

concentrations to have an affinity threshold between 4% and 5% higher than this initial

39% setting, leading to the conclusion of an optimally known individual Ab hypervolume

between 39%-44%. Therefore, the trade-off to decision makers is picking Abs for future

employment is that fitter Abs most likely will be larger, increasing the risk of future false

positives while picking the more optimally sized Abs—while mitigating the false

detection risk—results in a lower fitness. An exception to this is when a Pareto Front

doesn’t materialize, as in Figure 50(a,e) where only a single optimally known solution

exists, with the pattern indicating the larger the Ab, the worse the classification fitness. In

this case, decision-makers will have to decide among the next best set of Ab solution

points: dominated but feasible.

128

Monday, 3/8/99

BETTER

TCP True Pareto Front, Monday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab Affinity Threshold D
eviation

O
bjective

2 : Ab Affinity Threshold D
eviation from

 39%

(a)

BETTER

UDP True Pareto Front, Monday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab A
ffinity Threshold D

eviation
O

bjective
2 : Ab A

ffinity Threshold D
eviation from

 39%

(b)

BETTER

ICMP True Pareto Front, Monday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab A
ffinity Threshold D

eviation
O

bjective
2 : Ab A

ffinity Threshold D
eviation from

 39%

(c)

Tuesday, 3/9/99

BETTER

TCP True Pareto Front, Tuesday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab A
ffinity Threshold D

eviation
O

bjective
2 : Ab Affinity Threshold D

eviation from
 39%

(d)

BETTER

UDP True Pareto Front, Tuesday, 39% affinity

Objective1: Correct Classification
O

bjective
2 : Ab Affinity Threshold D

eviation
O

bjective
2 : A

b A
ffinity Threshold D

eviation from
 39%

(e)

BETTER

ICMP True Pareto Front, Tuesday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab Affinity Threshold D
eviation

O
bjective

2 : Ab Affinity Threshold D
eviation from

 39%

(f)

Wednesday, 3/10/99

BETTER

TCP True Pareto Front, Wednesday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab Affinity Threshold D
eviation

O
bjective

2 : Ab Affinity Threshold D
eviation from

 39%

(g)

BETTER

UDP True Pareto Front, Wednesday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab A
ffinity Threshold D

eviation
O

bjective
2 : Ab A

ffinity Threshold D
eviation from

 39%

(h)
BETTER

ICMP True Pareto Front, Wednesday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab A
ffinity Threshold D

eviation
O

bjective
2 : Ab Affinity Threshold D

eviation from
 39%

(i)

129

Thursday, 3/11/99

BETTER

TCP True Pareto Front, Thursday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab Affinity Threshold D
eviation

O
bjective

2 : Ab Affinity Threshold D
eviation from

 39%

(j)

BETTER

UDP True Pareto Front, Thursday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab Affinity Threshold D
eviation

O
bjective

2 : Ab A
ffinity Threshold D

eviation from
 39%

(k)

BETTER

ICMP True Pareto Front, Thursday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab A
ffinity Threshold D

eviation
O

bjective
2 : Ab Affinity Threshold D

eviation from
 39%

(l)

Friday, 3/12/99

BETTER

TCP True Pareto Front, Friday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab Affinity Threshold D
eviation

O
bjective

2 : Ab Affinity Threshold D
eviation from

 39%

(m)

BETTER

UDP True Pareto Front, Friday, 39% affinity

Objective1: Correct Classification
O

bjective
2 : Ab Affinity Threshold D

eviation
O

bjective
2 : Ab Affinity Threshold D

eviation from
 39%

(n)

BETTER

ICMP True Pareto Front, Friday, 39% affinity

Objective1: Correct Classification

O
bjective

2 : Ab A
ffinity Threshold D

eviation
O

bjective
2 : Ab A

ffinity Threshold D
eviation from

 39%

(o)

Figure 50: Post-MOEA secondary population true Pareto Fronts

Figure 51 depicts the attack graph: the classification declaration of each Ab for

every non-self data set packet of that day’s data set, in order to determine the

classification effectiveness of a single attack (non-self sequence). In plotting the non-self

event points into MATLAB11, the x-axis denotes “-1” as false positive and “1” as true

positive. The y-axis represents the packet number, increasing in a negative direction,

allowing direct correlation of the classification of the attack, when referenced against the

Figure 45 ID landscape.

11 To graph attack results into MATLAB, copy the XML file’s “X Vector” and “Y Vector” set of values
into MATLAB variables x=[<X Vector>] and y=[<Y Vector>] and then type “plot(x,y,’d’)”. Then scale the
graph with “axis([-2 2 -<size of data set> 0])”.

130

When comparing Figure 51(a,b,c), we see a trend where as the Ab population’s

affinity threshold is linearly decreased. More “open holes” develop on the false positive

side, indicating more correct classifications on the right side. Further, in Figure 51(c),

two attacks—one 10401 non-contiguous packets long (LL attack ID #2612) and the other

being one packet long (LL attack ID #29)—as having a 0% false positive rate for the

entire population. In Figure 51(e), LL attack ID #7—seven packets long—has a 0% false

positive rate; as does LL ID #22—four packets long—in Figure 51(g).

In Lippmann’s discussion of the results of the off-line evaluation of the 1999 data

set, he specifies that attacks were best detected when they produced a consistent signature

or sequence of events in tcpdump data [Lippmann00]. However, the attack graphs of

Figure 51(b,c) show that on two occasions, LL attack ID #29, the single-packet land

attack, was detected with a 0% false positive rate, inferring jREMISA may have

performed more effectively against this particular form of intrusion than the eight

systems evaluated by Lippmann.

(a)

FALSE POSITIVE TRUE POSITIVE

D
ata Set Packet N

um
ber

BETTER

Non-self Detection Results, Thursday, 41% affinity

LL #29: land – 1 packet
0% false positive

(b)

12 Reference Appendix B for LL attack index mapping.

131

FALSE POSITIVE TRUE POSITIVE

D
ata Set Packet N

um
ber

BETTER

Non-self Detection Results, Thursday, 40% affinity

LL #26: neptune – 10401 non-consecutive packets
0% false positive

LL #29: land – 1 packet
0% false positive

(c) (d)

FALSE POSITIVE TRUE POSITIVE

D
ata Set Packet N

um
ber

BETTER

Non-self Detection Results, Monday, 39% affinity

LL #7: “ps attack” – 7 non-consecutive packets
0% false positive

(e) (f)

FALSE POSITIVE TRUE POSITIVE

D
ata Set Packet N

um
ber

BETTER

Non-self Detection Results, Wednesday, 39% affinity

LL #22: crashiis – 4 non-consecutive packets
0% false positive

(g) (h)
Figure 51: Post-MOEA attack graph

132

5.3.3 Distributed MOEA Results

During distributed execution and communication, we observed jREMISA

broadcast, receive, and decide whether to accept received nondominated Abs into its

secondary population (Figure 52). However, this methodology did not produce the

pattern of synergistic effectiveness we conjectured, as the graphical mapping of Table 8

depicts in Figure 53. However, to the distributed implementation’s credit, its two-

jREMISA configuration achieved the highest correct self classification rate of all

standalone and distributed tests with 86.21% at the benchmark 39% affinity threshold. In

addition, it did increase evaluation efficiency almost n-fold, where n is the number of

computers involved in data decomposition of the tcpdump file (Figure 54).

Figure 52: jREMISA screenshot of a two-system distributed island model execution

133

Standalone vs. Distributed Effectiveness: Thursday attack data set

97.66

85.45

98.1

86.21

97.94

84.31

98.55

84.94

80

82

84

86

88

90

92

94

96

98

100

Correct Self Correct Non-self

Classification Type at 39% Affinity Threshold

C
or

re
ct

 C
la

ss
ifi

ca
tio

n
R

at
e

(%
)

1 PC
2 PCs
3 PCs
4 PCs

B
E
T
T
E
R

Figure 53: Standalone vs. distributed effectiveness: Thursday

Stand-alone vs. Distributed Efficiency: Thursday attack data set

9.63

6.86

4.86

18.21

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4

Number of executing jREMISAs

Ru
nt

im
e

(h
ou

rs
)

B
E
T
T
E
R

Figure 54: Data decomposition-based distributed execution: efficiency vs. number of
executing jREMISAs

134

5.4 Other MIT-DARPA ID Data Set Evaluation Algorithms

Per Garrett’s definition of “useful,” in Section 1.3, an algorithm must be distinct

and effective. In this context, an algorithm is effective if it provides better or more

expedient results than another in a shared benchmark test. It was difficult to compare this

work to others due to our scale of evaluation, as the entire week-two’s insider data set

was analyzed.

Williams’ Warthog

In March, 2001, Williams’ award-winning thesis focused on interactive,

evolutionary search techniques, in the context of a computer immune system, to detect

computer network intrusions, with particular emphasis on stealthy and zero-day attacks

[Williams01]. His system, Warthog, trained Abs with the same LL self-only data sets as

ours but used an attack set consisting of only 2643 LL packets from Thursday’s attack set

and a set of packets generated by Nessus13. In Warthog’s “false positive error rate vs.

number of antibodies” analysis, Williams concludes that as the number of Abs was

increased, so did the false positive rate (Figure 55(a)). However, from jREMISA

scenarios one through five, we experience a trend of continuing improvement, from a

37.4% false positive rate with 371 Abs to 0.10% with 2164 Abs (Figure 55(b)); thus

giving jREMISA a better false positive rate trend.

13 Nessus: network vulnerability scanner, http://www.nessus.org.

135

B
E
T
T
E
R

(a) [Williams01]

False Positive Error Rate vs. Number of Antibodies:
Thursday

31.67

23.08

2.34

7.49

0.29

37.4

0

5

10

15

20

25

30

35

40

371 (42%) 506 (41%) 802 (40%) 2137 (39%) 2884 (38%) 3953 (37%)

Number of Antibodies (Affinity Threshold)

E
rr

or
 R

at
e

(%
)

B
E
T
T
E
R

(b)

Figure 55: Warthog vs. jREMISA: false positive rate vs. number of antibodies

136

Other works considered

While we discovered many algorithms applied to the 1999 MIT-DARPA data set,

their experimental purpose differed from ours. The following papers were reviewed in

attempting to compare the author’s algorithm to ours and serve as a future avenue of

research for jREMISA:

1. Gonzalez, F., Dasgupta, D., Anomaly Detection Using Real-Valued Negative

Selection, University of Memphis, Tennessee, 2003;

2. Lydon, A., Compilation for Intrusion Detection Systems, Master’s thesis, Ohio

University, 2004;

3. Li, L., Cai, W., Anomaly Detection using TCP header information, George Mason

University, 2004;

4. Soliman, M., El-Helw, A., NIDS using Bloom filters, U. of Waterloo, 2005;

5. Gaddam, S., Phoha, V., Balagani, K., K-Means+ID3: A Novel Method for

Supervised Anomaly Detection by Cascading K-Means Clustering and ID3

Decision Tree Learning Methods, IEEE, Vol. 19, No. 3, March, 2007;

6. Shapiro, J.M., An Evolutionary Algorithm to Generate Ellipsoid Detectors for

Negative Selection, Air Force Institute of Technology Master’s Thesis, March

2005 [Shapiro05].

5.5 Summary

The experiments discussed in this chapter have satisfied the established

hypothesis objectives presented in Chapter 1. Section 5.2 indicates the validation of the

REALGO and MISA Java replicas based on the first hypothesis objective. We were able

137

to build jREMISA, using these replicas as the software foundation. Section 5.3 validated

the second and third hypothesis objectives of achieving “high classification rates” and

discovering a discrete pattern range of optimally known Ab affinity threshold. In

addition, jREMISA unexpectedly achieved 0% false classification for LL attacks 7, 22,

26 and 29, ranging between one and 10401 packets. Our fourth hypothesis objective of

distributed, cooperative communication was also validated based on jREMISA behavior

reported. Section 5.4 compared our results to those of another algorithm applied to the

same data set day, showing jREMISA to be more effective in one area, defining the

algorithm as “useful” [Garrett05].

These validated objectives conclude that jREMISA is not only a successful proof-

of-concept but a useful ID evaluation tool in the context it provides unique features

conjectured not duplicated by all other algorithms and effective in that it was shown to

have better results than another algorithm against the same benchmark data set. While not

yet production-grade, this software is left for continued development based on

suggestions in Section 6.3. The next Chapter provides conclusions to our hypothesis

objectives and suggestions for continued avenues of research.

138

VI. Conclusions and Future Work

The impetus for this research stemmed from the limitations imposed by today’s

predominantly-employed signature-based IDSs applied to the ID domain. Given the

strengths of MOEAs and the cutting-edge research of AIS application to the ID domain,

we successfully engineered a useful proof-of-concept application with a human

immunological-inspired approach, utilizing evolutionary search techniques applied to the

ID problem. The jREMISA MOP model of protocol-specific Ab populations computed

against proven, integrated evolutionary operators from REALGO and MISA introduces a

new way of accurately classifying self from non-self and responding appropriately. This

chapter reflects on the conclusions drawn from previous chapters, leading to the

validation of the several objectives that culminate our hypothesis.

6.1 Hypothesis Conclusion

This research effort set out to develop a proof-of-concept AIS-inspired MOEA

applied to the ID domain. Rather than start from scratch, we wisely discovered two

existing AIS algorithms—REALGO and MISA—and used them as the foundation for

building jREMISA. Incorporating multiobjectivity and given a ID data set, we defined

four measurable objectives based on our algorithm’s evaluation of the data set to

determine if jREMISA is a useful ID domain tool. Based on the results of Chapter 5, we

indicate whether our objectives are validated:

1. VALIDATE THE MIGRATION OF EXISTING C-BASED AIS

ALGORITHMS INTO JAVA-BASED EQUIVALENTS. This objective

139

requires duplicate output of the Java implementation that the original C code

produced. Section 5.2 showed that jREALGO slightly exceeded the fitness values

of REALGO against Yao and Liu’s test function. In addition, jMISA exhibits a

nearly identical known Pareto Front as MISA, with jMISA possessing the

solution points closest to the MISA’s true Pareto Front, per Euclidian distance

calculations. Based on these two results, we have met this objective and can use

the Java equivalents as the foundation for building jREMISA;

2. ATTAIN THE HIGHEST CORRECT CLASSIFICATION RATE KNOWN

FOR THIS PROOF-OF-CONCEPT ALGORITHM. Section 5.3 presents

jREMISA evaluation of each day of the MIT-DARPA 1999 week-two insider

attack data set. The results correctly reflected self classification (in the 39%

affinity threshold range) between 83.37% and 85.45% and non-self classification

between 96.57% and 99.90%. In addition, all jREMISA detectors exhibited a 0%

false positive rate for non-self event sequences that composed four attacks:

a. LL attack 7, “ps attack,” 7 non-consecutive packets, implying jREMISA is

adept at detecting an irregular FTP session;

b. LL attack 22, “crashiis”, 4 non-consecutive packets, implying jREMISA is

adept at detecting malformed packets for crashing Microsoft web servers;

c. LL attack 26, “neptune”, 10406 non-consecutive packets, implying

jREMISA is adept at detecting a TCP-SYN flood DoS attack;

d. LL attack 29, “land”, 1 packet, on two occasions, implying jREMISA is

adept at detecting a packet crafted to have the same sender and receiver.

140

Based on these results and the corollary that jREMISA was shown to be more

effective in at least one test over another algorithm, we have met this objective’s

classification requirement;

3. IDENTIFY A KNOWN OPTIMAL DETECTOR HYPERVOLUME. Section

5.3.2’s Figure 50(a-o) experimentally indicate that at least 73% of the time, Abs

concentrate and form their Pareto Front when their hypervolume is between 39-

44%, for all populations. This signifies a consistent pattern of what a desired Ab

hypervolume should be in the tradeoff of its fitness score when choosing a

solution Ab point for future ID domain employment. Because of these results, we

have achieved this objective’s requirement;

4. VALIDATE AIS COOPERATIVE COMMUNICATION WITHIN A

DISTRIBUTED ENVIRONMENT. Section 5.3.3, Figure 52 depicts a snapshot

of a jREMISA working cooperatively in evaluating the Thursday attack data set.

The message console clearly shows the multiple broadcasting of newly discovered

nondominated Abs and the receipt, evaluation and subsequent rejection of a

broadcasted Ab from another jREMISA. As a corollary, the two-jREMISA

distributed implementation had the highest correct self classification rate of all

tests. Based on these results, we achieve this objective’s cooperative

communication requirement.

Because all four objectives were met, we declare our hypothesis validated and algorithm

useful.

141

6.2 Conjectures Based on this Research

In addition to this research’s original hypothesis of validating an AIS-inspired

MOEA, we submit two original conjectures and discussion of each:

1. a proposed purpose and modeling of the innate immune system;

2. the utility of IP protocol-segregated Ab populations.

6.2.1 Modeling the Innate Immune System

As introduced in Section 2.2, the BIS is composed of the innate and adaptive

immune systems. Section 2.3 introduced the AIS as solely the computational model of the

latter half of the BIS.

However, we conjecture the innate BIS serves a purpose for being

computationally modeled. To date, AIS research applied to the ID domain has

traditionally focused on packet headers (context) and not payloads (content). However,

HTTP protocol payloads are desirable over other protocols for their ability to store their

entire payload within one packet. For example, when logging into a server via telnet,

each packet’s payload consists of one alphanumeric press from the keyboard. It can be

quite difficult to discern a username or password for two key reasons: (i) the possibility

the user may have hit the backspace key a number of times; and (ii) packets being

received at arbitrary times, in an arbitrary order (assuming all packets were received).

HTTP payloads, on the other hand, are not passed until the user presses the “Enter” key,

passing the entire Uniform Resource Locator (URL) string into the packet. HTTP

exploits are currently one of the most popular methods of vulnerability discovery and

142

exploitation (e.g., phishing14). Lippmann supports the inspection of packet payloads in

his recommendations for future IDS enhancements, specifically citing the inspection of

both packet contents and context [Lippmann00].

Therefore, we believe scanning HTTP packet payloads based on a database of a

priori HTTP exploit strings constitutes an innate BIS and may be deterministically

modeled as such. By integrating both the innate and adaptive BIS into one algorithm, we

can complete a consistent modeling of the BIS.

6.2.2 Protocol-Based Antibody Populations

To date, EAs have employed a single Ab population. Per the affinity threshold, a

simple distance measure between an Ab and Ag to determine self or non-self is what we

term first-order pattern matching. ID data sets are more complex in that packets of

differing protocol have a disparate number and size of payload fields. Therefore,

jREMISA’s initial population is a set of three protocol-specific populations: a TCP, UDP

and ICMP pool. The user’s selected data structure (IP, TCP, UDP and ICMP fields

selected) determines the size of the search landscape and the length of the Ab. This

improves pattern matching because incoming Ags are compared only to an Ab of their

respective protocol, allowing “apple-to-apple” comparison of header fields. This also

improves efficiency because only that subset of the entire primary population is being

14 Defined by PC Magazine
(http://www.pcmag.com/encyclopedia_term/0,2542,t=phishing&i=49176,00.asp) as “a scam to steal
valuable information such as credit card and social security numbers, user IDs and passwords.” E.g., an
official-looking e-mail is sent to potential victims pretending to be from their ISP, bank, or retail
establishment, with the expectation some percentage of recipients respond accurately.

143

evaluated. Matching the Ag to the respective Ab population in this IP protocol-specific

manner is what we term second-order pattern matching.

6.3 jREMISA: “The Way Ahead”

Our software, motivated by the hypotheses of this research, is developed along a

two-prong approach:

1. code the foundation from existing AIS algorithms;

2. enhance with innovative, distributed and EC-inspired ideas.

All of our ideas were successfully implemented, as Chapter 5 attests. As this software

was developed with the “follow-on developer” in mind, by implementing good software

programming practices, we propose the following future enhancements to jREMISA:

1. implement an innate BIS based on known HTTP exploit strings (as explained in

Section 6.2.1);

2. continue developing the evaluation capability started for the KDD Cup 99 data set

(see Appendix C);

3. further develop jREMISA’s tcpdump decoder to facilitate protocols beyond TCP,

UDP and ICMP. This recommendation is supported by Lippmann who cited that

one reason many attacks were missed was due to the lack of IDS protocol support

(e.g., ARP, SNMP, DNS, etc.) [Lippmann00].

Continuing to develop manageable software requires disciplined software engineering

practices. As such, we suggest the motivated reader review our thoughts on software

engineering principles (Appendix E) and maintaining jREMISA as open-source software

(Appendix F).

144

 It is stressed that the results of our experiments would not have been as high if we

had not employed the LL truth set to guide our detectors. However, because this was a

proof-of-concept algorithm against the ID domain, a guide was needed to measure

reaction by the detectors. Further, our classification rates are currently far from

acceptable for real-world implementation of jREMISA. For example, consider today’s

Air Force-level architecture comprised of 9.6 Gbps bandwidth links monitored by a team

of three analysts who can realistically monitor about 240 false positives, each, before

being overwhelmed, in a 24 hour period. A single 9.6 Gbps link delivers 8.2944 x 1014

bits of information per day. Dividing that into the maximum packet size of 16 KB yields

6,328,130,000 packets per day. Dividing the number of false positives by this number of

packets results in an acceptable error rate of 1.138 x 10-7 [Williams07].

We highly encourage the reader to inquire about acquisition of jREMISA and its

prepared data sets. Its intuitive GUI and flexibility of parameters settings allow for a

combinatoric number of user-defined experiments tailored to custom search landscape

size. Further, its well-commented code and implementation of multiple software design

patterns allow for a minimal learning curve in altering jREMISA’s programming.

6.4 Continued Research Need

On January 1, 2007, a story was published by the U.S. Department of Homeland

Security (DHS) announcing a $10.2 million dollar grant to four universities for their

research into electronic terrorist activity detection [CSO07]. These universities intend to

develop algorithms to find patterns and relationships in news stories and blogs utilizing

mathematical tools such graph theory, dynamic data analysis, optimization, “machine

145

learning” and statistical analysis. This goal and methodology is synonymous to the goal

of this research. Further, their intent to study information content is indicative of the need

to consider network traffic payloads and supports our conjecture of modeling the innate

BIS for HTTP payload examination. This research grant symbolizes the need for new,

large-scale ID data sets and the upgrade of today’s very few and aging ID data sets.

6.4.1 Suitability of the MIT-DARPA ID data sets

This research utilized the LL-procured (1999 insider) ID data set because it

currently constitutes the largest publicly available benchmark of network traffic

[Mahoney03]. However, this was also the only ID data set evaluated because of the

general lack of public domain data sets; a consequence of proprietary data privacy

concerns combined with the difficulty level in accurately simulating Internet traffic

[Mahoney03].

To make matters worse, the LL data sets have been criticized from many angles

as an overall inaccurate ID domain model. McHugh, in his assessment of the complete

LL corpus, declares the following fallacies [McHugh00]:

1. questionable traffic collection methodology;

2. attack taxonomy;

3. lack of statistical evidence validating real-world Air Force network traffic;

4. low traffic rates;

5. relative uniform distribution of the four major attack categories;

6. skewed distribution of the victim hosts;

7. overall flat network topology.

146

To evaluate these claimed simulation artifacts, Mahoney and Chan developed a simplistic

anomaly detection system they claimed “could not possibly work” [Mahoney03]. Their

system was trained on the first week and evaluated against the second week of network

traffic—the same as jREMISA. Their results indicated a 45% attack detection rate (79 of

177 attacks), with 43 false alarms, making them competitive with the top systems

involved in the original evaluation.

 These results appear to give merit to McHugh’s claims of the LL corpus, in which

he does not accompany answers with the many questions he raised [Mahoney03].

Mahoney’s recommendation to accurately modeling an ID data set is to simply add real

traffic to the simulation. Not withstanding privacy concerns, the benefits of a real-traffic

data set include [Mahoney03]:

1. eliminating the need to simulate traffic and label attacks;

2. factoring in the IP protocols introduced since 1999;

3. a greater volume of encrypted traffic, allowing for a more accurate modeling of

today’s network traffic composition.

Mahoney and Chan researched other ID data sets, such as Internet Traffic

Archive15, but found it unsuitable for its lack of application payload. They conclude by

suggesting the need for a new benchmark and, because of the proliferation of application-

payload encrypted traffic, migrate anomaly detection systems from NIDS, “on-the-wire,”

15 The Internet Traffic Archive is a moderated repository to support widespread access to traces of Internet
network traffic, http://ita.ee.lbl.gov.

147

to HIDS, which have the ability to evaluate the decrypted payload, after its delivery (see

Section 2.1.1).

6.4.2 “Cyber Storm”: the next ID data set?

In February of 2006, InfoWorld.com reported that the DHS had just completed,

“the first full-scale government-led cyber attack simulation” [InfoWorld06]. A public

report of the results and lessons learned was to be released mid-2006, said Andy Purdy,

acting director of the DHS National Cyber Security Division. DHS called this simulation

a “sophisticated cyber attack, involving 115 organizations in the U.S., Canada, the U.K.,

Australia and New Zealand,” in addition to private companies such as Microsoft,

VeriSign Inc. and Symantec Corp. Participating governmental agencies included the

DoD, Department of Justice, the U.S. State Department and the National Security

Agency. In February of 2007, InfoWorld.com reported that the DHS is planning “Cyber

Storm 2” to be conducted in March of 2008 [InfoWorld07]. It’s billed to include a greater

number of participants than the first, particularly with respect to number of international

participants.

In consideration of the aging ID data sets of today, this author conjectures the

opportunity may exist to become involved in this exercise to determine its potential value

as the next real-world ID data set.

6.5 Summary

This Chapter began with a review of the objectives needed to be met in order to

validate our hypothesis and the Chapter 5 experiments that met the hypothesis’

148

objectives. Following, we contribute ideas to unexplored areas of the AIS field. We

conclude with the future for jREMISA and its continued research need for helping solve

the ID problem.

Overall, this research effort validated our hypothesis that an AIS-inspired MOEA,

composed of segregated populations and proven EA operators of past AIS algorithms, is

useful and effective against the ID problem domain. Furthermore, we believe this

software to be the first AIS to apply multiobjectivity to the ID domain; specifically, the

MIT-DARPA data set. It is our hope that this proof-of-concept software be further

investigated, with the possibility it may bring us yet closer to solving the ID problem.

 149

Bibliography

[Anderson80] Anderson, J., Computer Security Threat Monitoring and Surveillance,
James P. Anderson Co., Fort Washington, PA, 1980.

[Bäck96] Bäck, T., Evolutionary Algorithms in Theory and Practice, Oxford University
Press, New York, 1996.

[BDNG06] Balachandran, S., Dasgupta, D., Nino, F., Garrett, D., A General Framework
for Evolving Multi-Shaped Detectors in Negative Selection, Computer Science
Department, University of Memphis, Tennessee, 2006, World Wide Web URL:
http://ais.cs.memphis.edu/papers/ais/2006/Multishaped-Detectors.pdf.

[Burnet50] Burnet, F.M., Clonal selection and after, Theoretical Immunology, Bell, G.I.,
Perelson, A.S., Pimgley Jr. (Eds.), P.J., Marcel Dekker Inc., 1978, pp.63-85.

[Busetti03] Busetti, F., Simulated Annealing Overview, World Wide Web URL
www.geocities.com/francorbusetti/saweb.pdf.

[Castro05] De Castro, L.N., Forum: Adaptation, Bio-Inspiration, Complexity,
PowerPoint presentation, International Symposium on Bio-Inspired Computing,
Johor, Malaysia, 5-7 September, 2005, World Wide Web URL:
http://bic05.fsksm.utm.my/files/Forum_Leandro.ppt.

[CC05] Coello, C., Cortés, N., Solving Multiobjective Optimization Problems Using an
Artificial Immune System, Genetic Programming and Evolvable Machines, Vol. 6,
pp.163-190, 2005.

[CDIS01] Williams, P., Anchor, K., Bebo, J., Gunsch, G., Lamont, G., CDIS: Towards a
Computer Immune System for Detecting Network Intrusions, Graduate School of
Engineering and Management, Air Force Institute of Technology, 2001.

[Chen04] Chen, T., Intrusion Detection for Viruses and Worms, International
Engineering Consortium, November, 2004, World Wide Web URL:
http://engr.smu.edu/~tchen/papers/iec2004.pdf.

[Chertoff01] Assistant Attorney General Michael Chertoff’s Testimony before the House
Subcommittee on Crime, world Wide Web URL:
http://www.usdoj.gov/criminal/cybercrime/cybercrime61201_MChertoff.htm.

 150

[CSEP07] Computational Science and Engineering Program Website, World Wide Web
URL: http://csep.hpcc.nectec.or.th/.

[CSO07] Daniel, D., U.S. Department of Homeland Security, Research Aims to Detect
Online Terrorist Activity, World Wide Web URL:
http://www.csoonline.com/read/010107/brf_terror_id_pf.html.

[Cusumano95] Cusumano, M., Selby, R., Microsoft Secrets: How the World’s Most
Powerful Software Company Creates Technology, Shapes Markets, and Manages
People, Simon & Schuster, New York, 1995.

[CVL02] Coello, C., Van Veldhuizen, D., Lamont, G.B., Evolutionary Algorithms for
Solving Multi-Objective Problems, Kluwer Academic Publishers, New York, 2002.

[Darwin64] Darwin, C., On the Origin of Species, 1st Edition (facsimile: 1964), Harvard
University Press, Cambridge, MA, 1859.

[Dasgupta99] Dasgupta, D., Artificial Immune Systems and their Applications, Springer
publishing, 1999.

[DBP91] De Boer, R.J., Perelson, A.S., Size and Connectivity as Emergent Properties of
a Developing Immune Network, Journal of Theoretical Biology, volume 149, pp.381-
424, 1991.

[DCVZ99a] De Castro, L.N., Von Zuben, F., Artificial Immune Systems: Part I – Basic
Theory and Applications, Technical Report TR-DCA 01/99, December, 1999.

[DCVZ99b] De Castro, L.N., Von Zuben, F., Artificial Immune Systems: Part II – A
Survey of Applications, Technical Report DCA-RT 02/00, February, 2000.

[DeBoer92] De Boer, R.J., Segel, L.A., Perelson, A.S., Pattern Formation in One- and
Two-dimensional Shape-Space Models of the Immune System, Journal of Theoretical
Biology, volume 155, pp.295-333, 1992.

[Detours96] Detours, V., Sulzer, B., Perelson, A.S., Size and Connectivity of the Idiotypic
Network are Independent of the Discreteness of the Affinity Distribution, Journal of
Theoretical Biology, volume 183, pp.409-416, 1996.

[DMC91] Dorigo, M., Maniezzo, V., Colorni, A., The ant system: an autocatalytic
optimizing process, Technical Report TR91-016, Politecnico Di Milano, 1991.

 151

[DPST06] J.. Dréo, A. Pétrowski, P. Siarry, and E. Taillard, Metaheuristics for Hard
Optimization: Methods and Case Studies, Springer-Verlag, Berlin, Germany, 2006.

[Dreher95] Dreher, H., The Immune Power Personality: 7 Traits You Can Develop to
Stay Healthy, Plume Books, 1996.

[EC1] Bäck, T., Fogel, D.B., Michalewicz, T., Evolutionary Computation 1: Basic
Algorithms and Operators, Institute of Physics (IoP) publishing, 2002.

[ELR06] Edge, K., Lamont, G., Raines, R., A Retrovirus Inspired Algorithm for Virus
Detection & Optimization, GECCO ’06, July 8-12, 2006.

[Farmer86] Farmer, J., Packard, N., Perelson, A., Physica, D. , The Immune system,
adaptation, and machine learning, Volume 2, Issue 1-3, Oct-Nov, 1986, pp. 187-204.

[FF04] Freeman, Eric. ,Freeman, Elizsabeth, Sierra, K., Bates, B., Head First Design
Patterns, O’Reilly Media, Inc., 2004.

[Forrest95] Dasgupta, D., Forrest, S., Tool breakage detection in milling operations using
a negative-selection algorithm, Technical Report No. CS95-5, Department of
Computer Science, University of New Mexico, 1995.

[Garrett05] Garrett, S., How Do We Evaluate Artificial Immune Systems?, Evolutionary
Computation, Volume 13, Issue 2, June, 2005.

[GGKK03] Grama, A., Gupta, A., Karypis, G., Kumar, V., Introduction to Parallel
Computing, Second Edition, Addison-Wesley, 2003.

[GG99] George, A.J.T., Gray, D., Receptor editing during affinity maturation: taking
leaps through the landscape, from Immunology Today, volume 20, pp. 196.

[Greensmith03] Greensmith, J., New Frontiers for an Artificial Immune System, Digital
Media Systems Laboratory, HP Laboratories Bristol, HPL-2003-204, 7 October 2003,
World Wide Web URL: http://www.hpl.hp.com/techreports/2003/HPL-2003-
204.pdf#search=%22%22New%20Frontiers%20for%20an%20artificial%20immune
%20system%22%22.

[Halloran05] Halloran, T., Lt. Col, USAF, GRASP: Designing Objects with
Responsibilities – Lesson 17, Microsoft PowerPoint presentation, CSCE593:
Introduction to Software Engineering, Department of Electrical and Computer
Engineering, Graduate School of Engineering and Management, Air Force Institute of
Technology, Ohio, USA, 2005.

 152

[HF00] Hofmeyr, S., Forrest, S., Architecture for an Artificial Immune System, IEEE
Transactions on Evolutionary Computation, 2000.

[Hightower95] Hightower, R.R., Forrest, S., Perelson, A.S., The Evolution of Emergent
Organization in Immune System Gene Libraries, in L. J. Eschelman (Eds.),
Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan
Kaufmann, San Francisco, California, pp.344-350, 1995.

[Hightower96] Hightower, R.R., Forrest, S., Perelson, A.S., The Baldwin Effect in the
Immune System: Learning by Somatic Hypermutation, in R.K. Belew and M. Mitchel
(Edc.), Adaptive Individuals in Evolving Populations, Addison-Wesley, MA, pp.159-
167, 1995.

[Hofmeyr00] Hofmeyr, S.A., An Overview of the Immune System, Tutorial about
computational immunology, World Wide Web URL:
http://www.cs.unm.edu/~immsec/html-imm/immune-system.html.

[HS02] Halloran, T.J., Scherlis, W., High Quality and Open Source Software Practices
(Position Paper), Second Workshop on Open Source Software Engineering,
International Conference on Software Engineering (ICSE) 2002, World Wide Web
URL: http://opensource.ucc.ie/icse2002/HalloranScherlis.pdf.

[HSE03] Halloran, T.J., Scherlis, W., Erenkrantz, J., Beyond Code: Content Management
and the Open Source Development Portal (Position Paper), Workshop on Open
Source Software Engineering, ICSE, 2003, World Wide Web URL:
http://www.fluid.cs.cmu.edu:8080/Fluid/fluid-publications/HalloranScherlis.pdf.

[HTD97] Hertz, A., Taillard, E., Dominique de Werra, Tabu Search: Local Search in
Combinatorial Optimization, John Wiley & Sons Ltd., 1997.

[HWGL02] Harmer, P., Williams, P., Gunsch, G., Lamont, G.B., An Artificial Immune
System Architecture for Computer Security Applications, IEEE Transactions on
Evolutionary Computation, Vol. 6, No. 3, June 2002.

[InfoWorld06] Gross, G., IDG News Service, U.S. DHS completes large-scale cyber
exercise, InfoWorld.com, World Wide Web URL:
http://www.infoworld.com/article/06/02/10/75280_HNdhs_1.html

[InfoWorld07] McMillan, R., IDG News Service, US government readying massive
cybersecurity test, InfoWorld.com, World Wide Web URL:
http://www.infoworld.com/article/07/02/12/HNcyberstorm2_1.html

 153

[Janeway97] Janeway Jr, C. A. and Travers, P., Immunobiology: The Immune System in
Health and Disease, Artes Médicas (Portuguese), 2d edition, 1997.

[Java04] Singer, M., Java Enterprise Gains Broader Support, September, 2004, World
Wide Web URL: http://www.internetnews.com/ent-news/article.php/3402341.

[KDD99] Hettich, S. and Bay, S. D. (1999). The UCI KDD Archive. Irvine, CA:
University of California, Department of Information and Computer Science., World
Wide Web URL: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[Kita96] Kita, H., Yabumoto, Y., Mori, N., Nishikawa, Y., Multi-objective optimization
by means of the thermodynamical genetic algorithm, Parallel Problem Solving from
Nature—PPSN IV, Voight, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P.
(Eds.), Lecture Notes in Computer Science, Springer-Verleg: Berlen, Germany, pp.
504-512, September, 1996.

[Lamont06] Lamont, G.B., Multi-Objective Evolutionary Algorithms: What, Why, and
Where? A Tutorial (revision 2), Class handout, CSCE 886, Evolutionary
Computation, Department of Electrical and Computer Engineering, Graduate School
of Engineering and Management, Air Force Institute of Technology, Ohio, USA,
2006.

[LamontACO06] Lamont, G.B., Swarm intelligence: the origins of ant colony
optimization techniques, Class handout, CSCE 886, Evolutionary Computation,
Department of Electrical and Computer Engineering, Graduate School of Engineering
and Management, Air Force Institute of Technology, Ohio, USA, 2006.

[Lippmann00] Lippmann, R., Haines, J., Fried, D., Korba, J., Das, K., The 1999 DARPA
Off-Line Intrusion Detection Evaluation, Lincoln Laboratory, Massachusetts Institute
of Technology, Lexington, MA, 2000

[LJ07] LinuxJournal.com: Understanding IDS for Linux, World Wide Web URL:
http://www.linuxjournal.com/node/5616/print.

[Mahoney03] Mahoney, M., Chan, P., An Analysis of the 1999 DARPA/Lincoln
Laboratory Evaluation Data for Network Anomaly Detection, Technical Report CS-
2003-02, Computer Science Department, Florida Institute of Technology, 2003.

[Marmelstein99] Marmelstein, R., Van Veldhuizen, D., Harmer, P., Lamont, G.,
Modeling & Analysis of Computer Immune System using Evolutionary Algorithms,
Department of Electrical and Computer Engineering, Graduate School of
Engineering, Air Force Institute of Technology, December 1999.

 154

[McGee07] McGee, P., Building Better Antibody Therapeutics, Drug Discovery &
Development, World Wide Web URL:
http://www.dddmag.com/ShowPR.aspx?PUBCODE=090&ACCT=1600000100&ISS
UE=0701&RELTYPE=DEV&PRODCODE=00000000&PRODLETT=AG&Commo
nCount=0.

[McHugh00] McHugh, J., Testing Intrusion Detection Systems: A Critique of the 1998
and 1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln
Laboratory, Association for Computing Machinery (ACM) Transactions on
Information and System Security (TISSEC), Vol. 3, Issue 4, 262-294, 2000.

[MFH02] Mockus, A., Fielding, R., Herbsleb, J., Two Case Studies of Open Source
Software Development: Apache and Mozilla, ACM Transactions on Software
Engineering and Methodology, Vol. 11, No. 3, pp. 309-346, July, 2002.

[MGL04] Maniezzo, V., Gambardella, L.M., De Luigi, F., Ant Colony Optimization, New
Optimization Techniques in Engineering, by G.C. Onwubolu and B.V. Babu, pp. 101-
117, Springer-Verlag, Berlin, Heidelberg, 2004.

[Michalewicz04] Michalewicz, Z., Fogel, D., How to Solve It: Modern Heuristics,
Second Edition, Springer-Verlag, Berlin, Germany, 2004.

[Middlemiss06] Middlemiss, M., Positive and Negative Selection in a Multilayer
Artificial Immune System, The Information Science Discussion Paper Series, No.
2006/03, University of Otago, January, 2006.

[MITDARPA99] MIT Lincoln Laboratory – DARPA Intrusion Detection Evaluation,
World Wide Web URL: http://www.ll.mit.edu/IST/ideval/.

[Nath07] Nath, A., Evolutionary Algorithms in a Nutshell, Portable Document Format
(PDF) slideshow, Association for Computing Machinery, University of Illinois
Student Chapter, September, 2006.

[Navy80] Denning, D., An Intrusion Detection Model, IEEE Transactions on Software
Engineering, Vol. 13, pp.222-232, February, 1987.

[NIST01] Bace, R., Mell, P., Intrusion Detection Systems, NIST Special Publication on
Intrusion Detection Systems, National Institute of Standards and Technology, 2001.

[NSS07] The NSS Group – Europe’s foremost independent network and security testing
organisation: Gigabit Intrusion Detection Systems (IDS), World Wide Web URL:
http://www.nss.co.uk/WhitePapers/gigabit_ids.htm#Host%20IPS%20(HIPS).

 155

[Osyczka85] Osyczka, A., Multicriteria optimization for engineering design. In Gero,
J.S., editor, Design Optimization, pp.193-227, Academic Press, 1985.

[Perelson96] Perelsen, A.S., Hightower, R., Forrest, S., Evolution and Somatic Learning
of the V-Region Genes, Research in Immunology, volume 147, pp.202-208, 1996.

[PO79] Perelson, A.S., Oster, G.F., Theoretical studies of clonal selection: minimal
antibody repertoire size and reliability of self-non-self discrimination, Journal of
Theoretical Biology, volume 81, no. 4, pp.645-70, 1979.

[Porter06] Porter, B., Approaching Zero: A Study in Zero-Day Exploits – Origins, Cases,
and Trends, Norwich University Journal of Information Assurance (NUJIA), Vol. 2,
Issue 2, June, 2006.

[Raymond00] Raymond, E.S., The Cathedral and the Bazaar, Thyrsus Enterprises, 2000,
World Wide Web URL: http://www.tuxedo.org/~esr/.

[Rensberger96] Rensberger, B., In Self-Defense, from “Life itself,” Oxford University
Press, p.212-228.

[S&C92a] Seiden, P.E., Celada, F., A Model for Simulating Cognate Recognition and
Response in the Immune System, Journal of Theoretical Biology, volume 158, pp.329-
357, 1992.

[S&C92b] Seiden, P.E., Celada, F., A Computer Model of Cellular Interactions in the
Immune System, Immunology Today, volume 13(2), pp.56-62, 1992.

[S&P88] Segel, L., Perelson, A.S., Computations in Shape Space: A New Approach to
Immune Network Theory, in Theoretical Immunology, Part Two, (Ed.) A.S. Perelson,
pp.321-343.

[SF07] SecurityFocus.com: Intrusion Detection Terminology (Part Two), World Wide
Web URL: http://www.securityfocus.com/infocus/1733.

[SFP93] Smith, R.E., Forrest, S., Perelson, A.S., Population Diversity in an immune
system model: Implications for genetic search, Foundations of Genetic Algorithms,
Whitley (Ed.), L.D., Morgan Kaufmann Publishers: San Mateo, CA, Vol. 2, pp.153-
165, 1993.

[Shapiro05] Shapiro, J.M., An Evolutionary Algorithm to Generate Ellipsoid Detectors
for Negative Selection, Air Force Institute of Technology Master’s Thesis, March
2005.

 156

[Smith97] Smith, D.J., Forrest, S., Hightower, R.R., Perelson, S.A., Deriving Shape
Space Parameters from Immunological Data, Journal of Theoretical Biology, volume
189, pp.141-150, 1997.

[Starlab] World Wide Web URL: http://users.pandora.be/richard.wheeler1/ais/inn.html.

[Stevens94] Stevens, R.W., TCP/IP Illustrated, Volume 1: The Protocols, Addison-
Wesley, 1994.

[Symantec04] Symantec Internet Security Threat Report, Trends for January 1, 2004 –
June 30, 2004, Volume VI, September, 2004, World Wide Web URL:
http://eval.veritas.com/mktginfo/enterprise/white_papers/ent-
whitepaper_symantec_internet_security_threat_report_vi.pdf.

[Symantec06] Symantec Internet Security Threat Report, Trends for January – June,
2006, Volume X, September 2006, World Wide Web URL:
http://www.symantec.com/specprog/threatreport/ent-
whitepaper_symantec_internet_security_threat_report_x_09_2006.en-us.pdf.

[Timmis02] De Castro, L.N., Timmis, J., Artificial Immune Systems: A New
Computational Intelligence Approach, Springer publishing, 2002.

[Timmis04] Timmis, J., Artificial Immune Systems: An Overview, PowerPoint
presentation, Computing Laboratory, University of Kent at Canterbury, UK, March,
2004.

[Warthog01] Williams, P., Anchor, K., Bebo, J., Gunsch, G., Lamont, G.B., Warthog:
Towards a Computer Immune System for Detecting “Low and Slow” Information
System Attacks, White Paper, Graduate School of Engineering and Management, Air
Force Institute of Technology, March, 2001.

[Williams01] Williams, P., WARTHOG: Towards a Computer Immune System for
Detecting “Low and Slow” Information System Attacks, Air Force Institute of
Technology Master’s Thesis, March 2001.

[Williams07] Williams, P., “Government-acceptable false positive error rate.” Electronic
message, 28 Feb 07.

[Worm07] Computer worm – Wikipedia, the free encyclopedia, January, 2007, World
Wide Web URL: http://en.wikipedia.org/wiki/Computer_worm.

 157

[WS07] WindowSecurity.com: Intrusion Detection Systems (IDS) Part 2, World Wide
Web URL: http://www.windowsecurity.com/articles/IDS-Part2-Classification-
methods-techniques.html.

[Yao97] Yao, X., Liu, Y., Fast Evolution Strategies, Control & Cybernetics, Vol. 26, No.
3, pp. 467-496, 1997.

A- 1

Appendix A: ID-Domain Stochastic Search Algorithms

This appendix further elaborates on Section 2.4.2’s introduction to types of

stochastic search algorithms employed in the ID domain. While not utilized in our

research because of their inability to conform to jREMISA’s data structure or algorithm,

it is worth explaining what applications they serve for the purpose of choosing the most

appropriate one to apply to a particular problem domain. Seven popular stochastic

algorithms discussed are:

1. simulated annealing (SA);

2. tabu search (TS);

3. genetic algorithm (GA);

4. evolutionary strategy (ES);

5. evolutionary programming (EP);

6. ant colony optimization (ACO).

A.1 Simulated Annealing (SA)

Computational SA was developed in 1983 to deal with highly nonlinear and

combinatorial optimization problems [Busetti03] and to escape local optima

[Michalewicz04]. The algorithm itself was inspired by the metallurgical annealing

technique where a controlled heating and cooling process of a material through a

temperature T is intended to produce a uniform distribution of crystals with the lowest

possible internal energy. A controlled T decrease leads to a uniform, crystallized solid

(stable) state, corresponding to an absolute minimum of energy [DPST06]. Conversely,

A- 2

the rapid lowering of T results in quenching—an amorphous structure (metastable) state

leading to local minimums of energy.

Computationally speaking, SA is a strategy to approach a landscape’s globally

optimum solution with given constraints, traversing its various sub-optimal solutions

within a neighborhood, beginning at the highest T. This T allows for a search over the

largest possible area in a stochastic random walk manner. If our initial T and cooling rate

are optimally chosen, we restrict the number of sub-optimal choices made, stabilizing our

system and shrinking our neighborhood. As the neighborhood becomes small where T

finally tends to zero, our algorithm degenerates from stochastic to deterministic because

only improvements are accepted and, thus, a DFS completes the greedy search for the

optimum solution. However, if T is rapidly decreased (analogous to quenching), we most

likely end up in a (amorphous) local minimum.

As mentioned above, in metallurgy, a quenched material results in an amorphous

(defective) structure. However, this defect can be overcome by re-heating and cooling,

again. Synonymously, SAs major advantage over other methods is the ability to escape

local minima by increasing T. Consider the analogy of a bouncing ball that can bounce

over mountains, from valley to valley (local minima). At highest (initial) T, the ball can

bounce to any valley (Random Walk). As it does so, T decreases, resulting in less bounce.

If T is low enough where the ball cannot bounce out of a valley, T can be increased,

giving enough bounce for the ball to escape the valley. Algorithm 7 outlines the generic

SA algorithm.

A- 3

1 procedure simulatedAnnealing
2 begin
3 t←0
4 initialize T
5 select a current point vcurrent at random
6 evaluate vcurrent
7 repeat
8 repeat
9 select a new point vnew in the neighborhood of vcurrent
10 if eval(vcurrent) < eval(vnew)
11 then vcurrent←vnew

12 else if random[0,1) <
() ()new currenteval v eval v

Te
−

13 then vcurrent←vnew
14 until (termination-condition)
15 T←g(T,t)
16 t← t + 1
17 until (halting-criterion)
18 end

Algorithm 7: Basic simulated annealing algorithm [MICHALEWICZ04]

In order to execute SA, the following information is required a priori and problem

domain-specific [Michalewicz04]:

1. what defines a solution?

2. what is the neighborhood makeup of a solution?

3. what is the cost of a solution?

4. how is the initial solution determined?

5. how is the initial temperature T determined?

6. how is the cooling ratio g(T,t) determined?

7. what defines the termination condition?

8. what defines the halting criterion?

A- 4

A.2 Tabu Search (TS)

Tabu Search, in its purest form, is deterministic. Is it not until the tabu list, for

remembering last values visited in order not to re-visit them, is included, that it becomes

stochastic—the implementation method more commonly used. The roots of Tabu Search

date back to the 1970s. The algorithm, itself, eventually became a refined SA procedure

in which the introduction of a tabu list in memory maintains visited points, forcing the

search process to explore only unvisited areas [HTD97]. TS has now become an

established approximation technique which has been validated to beat many classical

procedures. TS is essentially deterministic, as opposed to SA, but can be modified to

include probabilistic elements, making it more nondeterministic [Michalewicz04]. For

example, as with SA’s T regulator, TS can escape local optima through probabilistic

control of an aspiration level. Algorithm 8 outlines the generic TS algorithm.

1 procedure tabuSearch
2 begin
3 select a current point vcurrent at random
4 evaluate vcurrent
5 tabuv ←vcurrent
6 Repeat
7 evaluate every point in the neighborhood of vcurrent
8 select a new point vnew in the neighborhood of vcurrent
9 if (eval(vcurrent) > eval(vnew))∧ vnew∉ tabuv then
10 vcurrent←vnew
11 tabuv ← tabuv ∪ vcurrent
12 t = t + 1
13 until (halting-criterion)
14 end

Algorithm 8: Basic tabu search algorithm [MICHALEWICZ04]

A- 5

As TS is modeled after SA, some of the same a priori information is required and

problem domain-specific [Michalewicz04]:

1. what defines a solution?

2. what is the neighborhood makeup of a solution?

3. what is the cost of a solution?

4. how is the initial solution determined?

5. what defines the halting criterion?

A.3 Genetic Algorithm (GA)

A GA is a search technique used in computing to find true or approximate

solutions to optimization and search problems based on Darwin’s “survival of the fittest”

theory of evolution [Darwin64]. In natural evolution, each species searches for beneficial

adaptations in an ever-changing environment (domain). As species evolve, these new

attributes are encoded into the chromosomes of the individual members. While

information does change via random mutation, the real force behind evolutionary

development is the exchange of the best chromosomal building blocks between two

chromosomes, during breeding [CSEP07]. GAs differ from traditional optimizations in

four respects. They:

1. manipulate the encoding of the variables vice the variables, themselves;

2. search from one population to another, verses individual to individual;

3. use objective function information, not derivatives;

4. use probabilistic vice deterministic transition rules.

A- 6

The pseudocode for a standard GA is described in Algorithm 9.

1 procedure GA
2 begin
3 g := 0; /* generational counter */
4 initialize P(g)
5 evaluate P(g) /* compute fitness values */
6 while (ι (P(g)) ≠ true) do
7 g := g + 1;
8 select: P(g) from P(g-1)
9 crossover: P’(g)
10 mutate: P’(g)
11 evaluate: P’(g)
12 P := survivors(P,P’,g)
13 od
14 end

Algorithm 9: Genetic Algorithm pseudocode

A.4 Evolutionary Strategy (ES)

ES are similar to GAs in that they, too, simulate evolution. The difference arises

in their origin of application. While GAs were designed to solve discrete or integer

optimization problems, ES were first applied to continuous parameter optimization

problems associated with laboratory experiments (e.g., they use real-vector coding

representation) [CSEP07]. Recombination involves taking the mean of each element

(allele) of the parent vector. Because jREMISA employed a bit string data structure, ES

did not conform to our work. ES and GAs are just two algorithms in the EAs collective.

A.5 Evolutionary Programming (EP)

 EP is similar to the GA idea but its data structure is not restricted to the

chromosome [Nath07]. Solutions can have any data structure with various mutation

methodologies possible based on the particular solution. Similar to jREMISA,

A- 7

recombination tends not to play a role. As jREMISA was restricted to a fixed

chromosome, the EP did not meet our requirements.

A.6 Ant Colony Optimization (ACO)

ACO is a paradigm for designing metaheuristic algorithms to solve combinatorial

optimization problems based on the collective foraging behavior of ants. The first ACO

algorithm was introduced in 1991 [DMC91] with the essential trait being the combination

of a priori information about the structure of a promising solution with a posteriori

information about the structure of previously obtained good solutions [MGL04]. ACOs

drive a low-level, constructive solution in a population framework that randomizes the

construction in a Monte Carlo16 way. A Monte Carlo combination of different solutions

elements is also suggested by GAs but in the case of ACOs, the probability distribution is

explicitly defined by the previously obtained solutions. Initial ACO applications included

[LamontACO06]:

1. the traveling salesman problem (TSP);

2. quadratic assignment problem;

3. graph colouring;

4. job-shop scheduling;

5. sequential ordering;

6. vehicle routing.

16 Monte Carlo methods involve simulations dealing with stochastic events; they employ a purely random
search where any selected trial solution is fully independent of any previous choice and its outcome. The
current “best” solution and associated decision variables are stored as a comparator [CVL02].

A- 8

In the real world, ants initially wander randomly and upon finding food, return to

the colony while laying down pheromone that temporarily enables trail remembrance.

Hence, if other ants find such a path, they likely will follow it vice continue wandering

randomly. Over time, however, the pheromone trail evaporates, reducing its attractive

strength. However, as more ants traverse this path, the more pheromone is laid, providing

a stronger attraction to that particular path. This evaporation process has the advantage of

avoiding convergence to a locally optimal solution. Thus, when one ant finds a good

(pheromone-strong) path from the colony to the food source (objective), other ants are

more likely to follow that path, eventually resulting in a single, optimal path.

ACOs have the advantage over SA and GA when the problem domain graph (e.g.,

TSP) changes dynamically. When this happens, the ant colony can be run continuously

and adapt to changes in real-time. Figure 56 depicts an example of ants finding more food

(F) below the barrier than above it, resulting in a more optimal pheromone trail

developing below the barrier than above.

Figure 56: Example of ACO given a preponderance of food at the bottom trail

B- 1

Appendix B: MIT-DARPA 1999 Week 2 Truth Set Mapping

This appendix provides the mapping of the MIT-DARPA 1999 week-two LL

truth set’s high-level attack identification to what we believe to be the exact packet

numbers within the second week’s five data set files. In order for jREMISA to determine

whether its detectors have correctly classified an incoming data set packet as self or non-

self, it must be able to reference a truth table for every packet identification number. The

detections list file provided by the LL website [MITDARPA99] provides enough high-

level detail of each attack to search for it at the packet level: date, start time, destination

machine, and attack technique. To discover the packet sequence and duration of an

attack, we used Ethereal v.0.99, as shown in Figure 57.

Figure 57: Ethereal analysis of the 1999 week-two Monday clean insider data set

B- 2

The methodology of combining the MIT-DARPA 1999 week-two insider data set

with LL’s truth set to extract an attack sequence of packets was as follows:

1. acquire and open one day’s data set in Ethereal17;

2. apply the Ethereal filter, “ip.proto == 1 || ip.proto == 17 || ip.proto == 6” (see

Section 4.3.1);

3. save as “<day>_filtered.cap”;

4. map LL’s “start time” in seconds to the Ethereal “seconds” column to verify

destination IP (victim) and payload match LL truth set (where a day’s live play

ranges an average of 22 hours, beginning at 0800, per LL);

5. further filter by source IP (attacker), destination IP (victim) and IP protocol (as

above) to bound the attack to discover start and end packet number and time

duration;

6. use jREMISA to extract each packet number into a XML file, titled by the LL-

designated attack number, giving it the same filter parameters (because this author

is not manually typing in 10,000 packet ID numbers).

Upon doing this for as many of the packet header-focused attacks as possible (e.g.,

“portsweep”), jREMISA loads the appropriate XML files into Java TreeMaps that

perform O(log n) search time for determining the truth of each Ab’s declaration.

17 In May, 2006, the Ethereal project changed ownership to the open-source project, Wireshark
(http://www.wireshark.org). Wireshark was unable to load data sets of our abnormally large size, hence our
research stayed with the last stable release of Ethereal, v0.99.

B- 3

Our declarations and commentary of the attack events that follow is based on

empirical interpretation is what we believe to constitute the range of the attack from start

to end and may not be 100% accurate. We are fairly sure of a majority accuracy, as this

Cisco-Certified Network Associate (CCNA)-certified author has a decade of training and

experience in network packet analysis and executing various USAF-sanctioned

vulnerability scans and network-based exploits (as a former 92d Aggressor18 Blue and

Red Team Chief). The following tables provide the low-level mapping from the LL

detections list file of 16 successfully extracted, context-based attacks.

MONDAY, 03/08/99
1,753,377 packets total

1,737,455 feasible (TCP/UDP/ICMP = 99.09%)
LL Truth Set Website

ID Date Start Destination Name
03/08/1999 08:50:15 zeno.eyrie.af.mil pod

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

2

206.229.221.82 >
zeno.eyrie.af.mil

3011.585624 –
3011.882456

104504 – 104745
(241 consecutive packets)

ICMP (fragmented)

COMMENTS
1. Ethereal filter: ip.src_host matches "206.229.221.82" && ip.dst_host matches

"zeno.eyrie.af.mil" && ip.proto == 1 (ICMP).

18 92d Information Warfare Aggressor Squadron, Air Force Information Warfare Center, Lackland AFB,
Texas.

B- 4

LL Truth Set Website
ID Date Start Destination Name

03/08/1999 15:57:15 pascal.eyrie.af.mil
(172.16.112.50)

land

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

5

pascal to pascal 28626.76379 Packet #1412753 TCP
COMMENTS

1. crafted DoS packet to make victim’s address source, as well;
2. LL claims this is a UDP packet but Ethereal reports protocol as TCP.

LL Truth Set Website
ID Date Start Destination Name

03/08/1999 19:09:17 pascal.eyrie.af.mil ps attack
Ethereal-Mapped Interpretation

From-To Duration (s) Packets Protocol

7

mars.avocado.net >
pascal.eyrie.af.mil

40146.26430 –
40158.01769

695119-
695122,695124,695125,

695132, 695133

TCP-FTP

COMMENTS
1. pascal (victim) FTP-requests “psexp.sh.uu” then FINs the connection.

TUESDAY, 03/09/99

1,585,120 packets total
1,571,748 feasible (TCP/UDP/ICMP = 99.15%)

LL Truth Set Website
ID Date Start Destination Name

03/09/1999 08:44:17 marx.eyrie.af.mil
(153.37.134.17)

portsweep

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

8

153.37.134.17 >
www.eyrie.af.mil

2653.473586 –
4269.591726

49201 – 97318
(1030 non-consecutive packets)

TCP – FIN flag

COMMENTS
1. LL truth set says DST_IP = “marx.eyrie.af.mil” but Ethereal reports the FIN flag

flood from marx, attacking www.eyrie.af.mil;
2. destination ports 1-1000 swept;
3. Ethereal filter: ip.src_host matches "153.37.134.17" && ip.dst_host matches

"www.eyrie.af.mil" && ip.proto == 6 (TCP).

B- 5

LL Truth Set Website
ID Date Start Destination Name

03/09/1999 10:06:43 marx.eyrie.af.mil
(153.37.134.17)

back

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

10

172.16.118.70 >
www.eyrie.af.mil

7649.806550 –
7770.168467

185125 – 187986
(522 non-consecutive packets)

TCP-HTTP

COMMENTS
1. Ethereal filter: ip.src_host matches "172.16.118.70" && ip.dst_host matches

"www.eyrie.af.mil" && ip.proto == 6 (TCP);
2. packet match entails many connections with backslash storms;
3. while LL labels this attack against marx, Ethereal reported it to be against

www.eyrie.af.mil.

WEDNESDAY, 03/10/99
1,011,149 packets total

995,235 feasible (TCP/UDP/ICMP = 98.43%)
LL Truth Set Website

ID Date Start Destination Name
03/10/1999 12:02:13 marx.eyrie.af.mil

(153.37.134.17)
satan

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

17

204.97.153.43 >
www.eyrie.af.mil

14537.628371 –
14672.655720

382801 – 410611
(10504 non-consecutive packets)

TCP – SYN flag

COMMENTS
1. Ethereal filter: ip.src_host matches "204.97.153.43" && ip.dst_host matches

"www.eyrie.af.mil" && ip.proto == 6 (TCP);
2. looks like a SYN-based port sweep; Ethereal reports victim as

“www.eyrie.af.mil” vs. LL’s “marx.eyrie.af.mil”;
3. SRC_PORT +1, each time.

B- 6

LL Truth Set Website
ID Date Start Destination Name

03/10/1999 13:44:18 pascal.eyrie.af.mil mailbomb
Ethereal-Mapped Interpretation

From-To Duration (s) Packets Protocol

18

208.254.251.132 >
pascal

20650.472698 –
21246.253089

555295-597287
(5004 non-consecutive packets)

TCP-SMTP

COMMENTS
1. Ethereal filter: ip.src_host matches "208.254.251.132" && ip.dst_host matches

"pascal.eyrie.af.mil" && ip.proto == 6 (TCP);
2. 208.254.251.132 logs in asdfg@hotlips.com, sends a large-body email to one user

@pascal.eyrie.af.mil and logs out. This occurs 500 times.

LL Truth Set Website
ID Date Start Destination Name

03/10/1999 23:56:14 hume.eyrie.af.mil crashiis
Ethereal-Mapped Interpretation

From-To Duration (s) Packets Protocol

22

205.180.112.36 >
hume

57359.536276 –
57366.408634

981138,
981140,981141,981145

TCP-HTTP

COMMENTS
1. as the attack describes—a single malformed HTTP packet (#981141) is sent to

hume (we include the others for connection setup and teardown from attacker).

THURSDAY, 03/11/99
1,563,069 packets total

1,547,709 feasible (TCP/UDP/ICMP = 99.02%)
LL Truth Set Website

ID Date Start Destination Name
03/11/1999 08:04:17 hume.eyrie.af.mil crashiis

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

23

linux2.eyrie.af.mil >
hume

240.816330 –
247.625176

3450,3452,3453,3458 TCP-HTTP

COMMENTS
1. as the attack describes—a single malformed HTTP packet (#3453) is sent to hume

(I include the others for connection setup and teardown from attacker for
patternizing attacker’s source location).

B- 7

LL Truth Set Website

ID Date Start Destination Name
03/11/1999 10:50:11 marx.eyrie.af.mil

(153.37.134.17)
satan

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

25

linux9.eyrie.af.mil >
www.eyrie.af.mil

5589.224812 –
5591.868966

136873 – 157280
(10056 non-consecutive pkts)

TCP

COMMENTS
1. Ethereal filter: ip.src_host matches "linux9.eyrie.af.mil" && ip.dst_host matches

"www.eyrie.af.mil" && ip.proto == 6 (TCP);
2. while labeled “satan,” the pattern is “portsweep” near this Start time;
3. ethereal reports destination as “www.eyrie.af.mil”, not marx;
4. SRC_PORT increments src port +1, each time, for DST_PORTs 1-9999.

LL Truth Set Website
ID Date Start Destination Name

03/11/1999 11:04:16 pigeon.eyrie.af.mil neptune
Ethereal-Mapped Interpretation

From-To Duration (s) Packets Protocol

26

209.117.157.183 >
pigeon

11030.776696 –
11235.663506

381781-412373
(10401 non-consecutive

packets)

TCP – SYN flag

COMMENTS
1. Ethereal filter: ip.src_host matches "209.117.157.183" && ip.dst_host matches

"pigeon.eyrie.af.mil" && ip.proto == 6 (TCP);
2. SYN flood: 10 packets each for DST_PORT 1 through 1024.

LL Truth Set Website

ID Date Start Destination Name
03/11/1999 15:47:15 pascal.eyrie.af.mil land

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

29

pascal > pascal 28006.155539 Packet #1121478 TCP-SMTP
COMMENTS

1. as stated in the attack description, a single TCP SYN flag packet was sent where
both SRC_PORT and DST_PORT = 25 (SMTP).

B- 8

FRIDAY, 03/12/99
1,362,422 packets total

1,347,393 feasible (TCP/UDP/ICMP = 98.90%)
LL Truth Set Website

ID Date Start Destination Name
03/12/1999 09:18:15 duck.eyrie.af.mil pod

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

35

dialup77.glink.net.hk >
duck.eyrie.af.mil

4690.999774 –
4691.534620

90303-90737
(435 consecutive packets)

ICMP (fragmented)

COMMENTS
1. as the attack describes—a series of contiguous, fragmented ICMP packets;
2. Ethereal filter: ip.src_host matches "dialup77.glink.net.hk" && ip.dst_host

matches "duck.eyrie.af.mil" && ip.proto == 1.

LL Truth Set Website
ID Date Start Destination Name

03/12/1999 11:20:15 marx.eyrie.af.mil
(153.37.134.17)

neptune

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

36

204.97.153.43 >
www.eyrie.af.mil

12010.065037 –
12214.803999

314201-342487
(10381 non-consecutive packets)

TCP – SYN flag

COMMENTS
1. as the attack describes, this is a SYN flood DoS, however, at this start time, the

victim is www.eyrie.af.mil, not marx;
2. Ethereal filter: ip.src_host matches "204.97.153.43" && ip.dst_host matches

"www.eyrie.af.mil" && ip.proto == 6.

LL Truth Set Website
ID Date Start Destination Name

03/12/1999 12:40:12 hume.eyrie.af.mil crashiis
Ethereal-Mapped Interpretation

From-To Duration (s) Packets Protocol

37

alpha.apple.edu >
hume

16808.70902 –
16815.70694

536909,536911,
536912,536949

TCP-HTTP

COMMENTS
1. packet #536912 is the malformed HTTP packet; the rest is set-up and teardown

records by sender, only.

B- 9

LL Truth Set Website

ID Date Start Destination Name
03/12/1999 17:13:10 pascal.eyrie.af.mil portsweep

Ethereal-Mapped Interpretation
From-To Duration (s) Packets Protocol

42

209.167.99.71 >
pascal.eyrie.af.mil

33181.082026 –
33904.161875

#1171914-1208354
(5058 non-consecutive packets)

TCP – SYN flag

COMMENTS
1. Ethereal filter: ip.src_host matches "209.167.99.71" && ip.dst_host matches

"pascal.eyrie.af.mil" && ip.proto == 6.

C- 1

Appendix C: KDD Cup 99 Data Set

This appendix further explains the technical details and requirements of

facilitating the KDD Cup 99 data set into jREMISA. The 1999 KDD Cup data set, used

for The Third International KDD Mining Tools Competition, was held in conjunction

with KDD-99 Fifth International Conference on Knowledge Discovery and Data Mining.

Built upon the 1998 MIT-DARPA data sets [KDD99, Mahoney03], the competition task

was to build a network intrusion detector—a predictive model capable of distinguishing

between “bad'' connections, called intrusions or attacks, and “good'' normal connections.

This database contains a standard set of data to be audited, including a wide variety of

intrusions simulated in a military network environment. We desire to evaluate our

algorithm against this data set, as well. However, due to lack of some basic data structure

information, we were unable to.

While the MIT-DARPA data sets are binary network traffic files, each KDD Cup

99 connection record (clear-text line) is a 42-dimension clear-text array of subjective

parameters based on basic features of a TCP connection and content features within a

connection and traffic features within the network. The first 41 dimensions are the record

composition, with the last dimension declaring whether it is a clean or attack record.

While we possessed the data set and truth set, we were unable to acquire each

dimension’s upper and lower bounds and discrete value definitions (i.e., some undefined

values for Gene 4 include, “SF”, “S1”, “REJ”, etc.). Regardless, jREMISA includes some

coded methods that prepare reading in of a KDD Cup 99 data set and selection of which

fields (genes) of the record should be evaluated. Table 9 depicts our chromosomal

C- 2

representation of a KDD Cup 99 connection record. Because we do not know the Value

Type’s boundaries, we could only guess the bit lengths in the last two columns of Table 9

that would compose the Ag chromosome.

Dim
(gene)

Field Purpose Value Type Start
Loc19

Gene
Bits†

Basic Features of Individual TCP Connections
1 duration length (number of seconds) of

the connection
continuous 0 16

2 protocol_type type of the protocol, e.g. tcp,
udp, etc.; author constraint:
“TCP”, “UDP”, “ICMP” only

discrete 16 2

3 service network service on the
destination, e.g., http, telnet, etc.

discrete 18 6

4 flag normal or error status of the
connection

discrete 24 8

5 src_bytes number of data bytes from
source to destination

continuous 32 8

6 dst_bytes number of data bytes from
destination to source

continuous 40 8

7 land 1 if connection is from/to the
same host/port; 0 otherwise

discrete 48 1

8 wrong_fragment number of ``wrong'' fragments continuous 49 6
9 urgent number of urgent packets continuous 55 6

Content Features Within a Connection Suggested by Domain Knowledge
10 hot number of ``hot'' indicators continuous 61 8
11 num_failed_logins number of failed login attempts continuous 69 6
12 logged_in 1 if successfully logged in; 0

otherwise
discrete 75 1

13 num_compromised number of ``compromised''
conditions

continuous 76 6

14 root_shell 1 if root shell is obtained; 0
otherwise

discrete 82 1

15 su_attempted 1 if ``su root'' command
attempted; 0 otherwise

discrete 83 1

16 num_root number of ``root'' accesses continuous 84 6
17 num_file_creations number of file creation

operations
continuous 90 6

18 num_shells number of shell prompts continuous 96 8
19 num_access_files number of operations on access

control files
continuous 104 8

20 num_outbound_cmds number of outbound commands
in an ftp session

continuous 112 8

21 is_hot_login 1 if the login belongs to the discrete 120 1

19 This field added by this author, in development of the Ab and Ag data structures.

C- 3

``hot'' list; 0 otherwise
22 is_guest_login 1 if the login is a ``guest'' login;

0 otherwise
discrete 121 1

Traffic Features Computed Using a Two-Second Time Window
23 count number of connections to the

same host as the current
connection in the past two
seconds

continuous 122 16

24 srv_count number of connections to the
same service as the current
connection in the past two
seconds (same-host connection)

continuous 138 16

25 serror_rate % of connections that have
``SYN'' errors (same-host
connection)

continuous 154 7

26 srv_serror_rate % of connections that have
``SYN'' errors (same-service
connection)

continuous 161 7

27 rerror_rate % of connections that have
``REJ'' errors (same-host
connection)

continuous 168 7

28 srv_rerror_rate % of connections that have
``REJ'' errors (same-service
connection)

continuous 175 7

29 same_srv_rate % of connections to the same
service (same-host connection)

continuous 182 7

30 diff_srv_rate % of connections to different
services (same-host connection)

continuous 189 7

31 srv_diff_host_rate % of connections to different
hosts (same-service connection)

continuous 196 7

32 dst_host_count continuous 203 16
33 dst_host_srv_count continuous 219 16
34 dst_host_same_srv_rate continuous 235 7
35 dst_host_diff_srv_rate continuous 242 7
36 dst_host_same_src_port_r

ate
 continuous 249 7

37 dst_host_srv_diff_host_ra
te

 continuous 256 7

38 dst_host_serror_rate continuous 263 7
39 dst_host_srv_serror_rate continuous 270 7
40 dst_host_rerror_rate continuous 277 7
41 dst_host_srv_rerror_rate continuous 284 7
42 truth label: “normal” or

<attackName>
Not part of data structure; testing
purpose only

 291

Table 9: KDD Cup 99 data structure [adapted from KDD99]

D- 1

Appendix D: jREMISA User Manual and Source Code

This appendix is the usage guide for the jREMISA software. Program

requirements, special instructions and explanation of the user interface are provided here.

Complementary to this guide are descriptions next to each GUI input field, to minimize

referencing this manual. Section D.1 is the “Quick Start Guide” for those who wish “out-

of-the-box,” turn-key execution. Section D.2 provides full detail of all software functions.

Section D.3 details the jREMISA Java files and depicts the high-level Unified Modeling

Language (UML) class diagram. Section D.4 provides Source Lines of Code (SLOC) for

any special programming. Section D.5 provides guidance on how to acquire this software

package, which is comprised of two pieces:

1. jREMISA application (2.2 MB JAR file);

2. MIT-DARPA 1999 week-1 (clean) and week-two (attack) insider filtered20 data

sets for each day of both weeks (3.45 GB).

D.1 Quick Start Guide

1. initialize population and perform negative selection (“Negative Selection” tab):

a. define the antibody population size for each IP protocol;

b. define the affinity threshold;

c. SELECT the jREMISA-filtered (MIT-DARPA) week-one clean data set

(remember the day you chose);

20 See Appendix B for filtration methodology.

D- 2

d. SELECT the absolute path and filename of the trained-and-immature

negative-selected population;

e. Click START.

2. MOEA:

a. click the “Data Structure [MIT-DARPA]” tab;

i. click the IP fields you wish to be evaluated of each data set packet

(by default, all are selected);

b. click the “MOEA” tab;

c. SELECT “Trained population file” as the just-saved trained population;

d. SELECT the jREMISA-filtered (MIT-DARPA) week-two attack data set

and choose the same day as the clean data set you chose, earlier;

e. click the “truth set” radio button of the attack day you just chose;

f. SELECT the path where all XML truth set files reside (should already be

filled in);

g. SELECT the absolute path and filename of the XML file that contains the

final Pareto Front population;

h. define the number of allowable false detections of each Ab before being

removed from the population;

i. define the percentage of Abs that is elitist-selected for secondary

population (that represents the fittest of all Abs);

j. network mode (OPTIONAL):

i. choose the “listen” and “broadcast” ports, pre-defined (where 1986

was the year the AIS concept was conceived);

D- 3

ii. broadcast message: optional; send messages to fellow jREMISA

administrators;

iii. broadcast nondoms(%): percentage of fittest Abs you want all

other jREMISAs to consider incorporating into their population;

iv. click the “Enable Ad-Hoc Networking” checkbox;

k. click START.

D.2 User Manual

This manual details compilation and execution details of jREMISA. When

executed, jREMISA begins in the “Negative Selection” menu and has four other major

function tabs, each described starting in Section D.2.2. Pressing “ERASE WINDOW”

clears the console output JTextArea. Pressing “EXIT” cleanly exits the application (i.e., if

you terminate without pressing “EXIT” leaves the app “hanging” in the COMMAND

PROMPT; hence the “red-X” button is disabled). Online help is in the form of a terse

usage statement of input type and bounds next to each user input field (JTextField).

D.2.1 Compiling and execution

jREMISA is a self-contained JAR. It can be either executed from the command

line or imported into a Java development environment, such as Eclipse, where the JAR

file is decomposed into the jREMISA project. To execute the JAR from the command

line, type “java –XX:+AggressiveHeap –jar jREMISA.jar”. When re-compiling, you

should always specify the jREMISA class as the main class.

D- 4

D.2.2 Negative Selection menu (Figure 58)

• Purpose: enable user to generate trained-and-immature Ab detectors.

• Requirements:

o clean tcpdump data set file;

o detector output XML filename.

• Procedure:

o define the primary population: either specify a prior trained-and-immature

population for continued training or define the size of the TCP, UDP and

ICMP primary populations;

o define starting affinity threshold (Chapter 5 experiment results indicate

39% as producing highest classification effectiveness);

o choose the data set to evaluate (“KDD Cup 99” is non-functional);

o SELECT clean tcpdump data set absolute path and filename;

o SELECT output file absolute path and XML filename;

o click START.

 “Training Population” sizes update with each passing generation;

 pressing STOP before completion or allowing completion saves

the population to the output filename specified;

 sample negative selection output shown in Section 4.6, Figure 35.

D- 5

Figure 58: jREMISA negative selection menu

D.2.3 MOEA Menu (Figure 59)

• Purpose: evaluate a trained (i.e., negative selected) population against an attack-

filled ID data set.

• Requirements:

o trained population XML file;

o attack-filled data set;

o truth set for the above attack data set;

o post-MOEA output filename;

o detector lifespan;

o elitism selection percentage;

D- 6

o networking mode (yes/no).

• Procedure:

o SELECT trained population absolute path and XML filename;

o SELECT attack-filled tcpdump absolute path and filename;

o click the day of the truth set to apply to the above attack day data set;

o SELECT the absolute path where all XML truth set files reside (double-

click a filename and the field reflects absolute path, only);

o SELECT post-MOEA output absolute path and XML filename;

o enter detector lifespan;

o enter elitist selection percentage;

o click “Enable Ad-Hoc UDP Immune System Networking” if performing

distributed networking:

 distributed networking is in the form of data decomposition: equal

partitions of the data set are assigned to each jREMISA;

 Ethereal breaks the day’s data set file up into equal partitions,

saved as a new tcpdump file, marking the start and end packet

number;

 For example, if you uniformly data-decompose Monday’s data set

of 1,737,455 packets among four jREMISAs, Ethereal should save

four files from the Monday data set:

1. first file should be packet 1 – 434364;

2. Second file should be packet 434365 – 868728;

3. Third file should be packet 868729 – 1303092;

D- 7

4. Fourth file should be packet 1303093 – 1737455,

where each jREMISA’s “Starting packet #” should be the

starting packet number of each file it’s assigned to.

o click START.

 “Primary Population” and “Secondary Population” sizes and

primary population effectiveness update with each passing

generation;

 pressing STOP before completion or allowing completion saves

the population to the output filename specified;

 sample post-MOEA output is depicted in Figure 60; it contains:

• IP fields selected for the detector;

• high-level effectiveness percentages with x- and y- vectors

that can be copied-and-pasted into MATLAB variables to

plot the attack graph, as described in Section 5.3.2;

• For each secondary population:

o Pareto Front x- and y-vectors that can be copied-

and-pasted into MATLAB variables to plot the

Pareto Front, as described in Section 5.3.2;

o Ab DNA chromosome composition, for future

jREMISA input.

D- 8

Figure 59: jREMISA MOEA menu

D- 9

Figure 60: Example post-MOEA XML output file

D.2.4 “Data Structure [MIT-DARPA 99]” Menu (Figure 61)

• Purpose: define the search landscape by picking the components of the IP, TCP,

UDP and ICMP packets that should be evaluated against only the same fields of

the data set packets.

• Requirements: none.

• Procedure: click the fields to be evaluated; by default, all are selected.

D- 10

Figure 61: JREMISA MIT-DARPA chromosome construction menu

D.2.5 “Data Structure [KDD Cup 99]” Menu (Figure 62)

• Purpose: define the search landscape by picking the dimensions of the 41-

dimension clear-text string that should be evaluated against only the same

dimensions of the data set lines.

• Requirements: none.

• Procedure: click the fields to be evaluated; by default, all are selected.

• This feature’s GUI is all that’s completed; Appendix C explains why this data set

cannot be currently evaluated.

D- 11

Figure 62: jREMISA KDD Cup 99 chromosome construction menu

D.2.6 “Packet Ops” Menu (Figure 63)

• Purpose: pre-processor feature to filter and ensure entire data set can be decoded

by jREMISA. If a packet is not of type TCP, UDP or ICMP, jREMISA halts, as

the Java code used in decoding is only certain of when TCP, UDP and ICMP

packets begin and end due to their identified sizes in their fields [Stevens94].

o This tab was only created to prepare the data sets and is not required

unless introducing new data sets.

• Requirements: data set for examination/filtration.

• Procedure: SELECT the absolute path and name of the tcpdump file and then

select one of the three functions:

D- 12

o FILTER (truth set filtration): takes a TCP/UDP/ICMP-only data set and

further filters by protocol, source and destination IP and port; user

additionally specifies LL attack ID, for reference, and absolute path and

name of XML file to save all match packet numbers into a truth set file;

o VERIFY: attempts to read in the entire data set to ensure MOEA

execution does not prematurely halt;

o INSPECT: decodes tcpdump file specified into clear-text output in the

console window.

Figure 63: jREMISA tcpdump packet operations menu

D- 13

D.3 jREMISA file hierarchy and UML class diagram

As introduced in Section 4.1, jREMISA was built in the Eclipse IDE. It is a single

project with multiple packages. Figure 64 depicts the Eclipse Package Explorer, showing

the project file hierarchy. Java file variables use Hungarian naming convention to give

developers the ability to read other people’s code relatively easy, minimizing code

comments [Cusumano95]. For example, in the GUI (JREMISA.java), variable names that

are GUI labels are prefixed with “l_” while GUI variable names that hold user input next

to each label are prefixed with “f_”.

Windows folder containing source .java files (which has its
complementary “bin” folder of compiled .class files, not shown)

Packages containing Java files that support the SAXBuilder and Element
classes, enabling XML file input/output

Controller package: manipulators of data and program state

Model package: holds data, provides jREMISA structure

Persistence package: data I/O, encoding/decoding, truth set storage
(each XML file is a packet ID sequence of one LL-labeled attack)

UI package: GUI menus and where main is defined as program launch point

“originals” package: acquired code whose original state was saved in the
event of “irrevocable code mess-up and start over”

Figure 64: jREMISA file hierarchy

D- 14

jREMISA functionality is made possible through the following files (Figure 64):

• controller package:

o Controller.java: accepts user input from GUI, instantiating the objects,

setting their parameters values and starting/stopping (if object is threaded).

Enables (sets-up) and disables (tears-down) networking (sockets);

o QuickSort.java: classic Quicksort algorithm, tailored to look for a

particular element of the integer array to sort all Ab arrays by in ascending

order in their respective ArrayList Ab population;

o UDPbroadcaster.java: encodes user one-liner message or Ab into UDP

packet and broadcasts to 255.255.255.255;

o UDPlistener.java: a Runnable thread object that listens (blocks) for

incoming data from the GUI-specified listen port and decodes packet. If

user message, this class sends to GUI for output. Else, if Ab, sends back to

controller for storage until end of generation, when MOEA looks in the

designated ArrayList for any broadcast Abs.

• model package:

o BroadcastAbStorage.java: class whose sole purpose is to maintain the

ArrayList of captured broadcast Abs. We do this so controller (puts

broadcast Abs in) and dumpPro (takes broadcast Abs out) threads can

safely, independently access this container;

o IObserver.java: interface that routes all GUI-output messages from non-

“UI class” objects to the GUI, for output. This implements the Observer

D- 15

software design pattern by separating concerns between the UI and the rest

of the program.

• persistence package:

o DumpPro.java: this is the algorithm workhorse. Originally acquired from

SSFNet (see Section 4.3.1), this class’ original purpose was to only read in

binary tcpdump files. To tighten code locality for faster operation, we

developed all MOEA code within this class. As a result, this Runnable

object is always instantiated when STARTing any functions from any of

the GUI’s tabbed menus. As this class was intended only for binary

tcpdump files, it should not be used for data sets not using this format (i.e.,

KDD Cup 99);

o Persistence.java: performs all persistent input/output. Loads and saves

XML-format populations for both negative selection and MOEA

operations and saves packet filter matches as an XML file containing

packet identification numbers;

o 16 “ID<#>.xml” files: all 16 attacks’ extracted packet numbers (via the

Filter function in the GUI) from the LL week two data sets are each saved

into a XML file with the LL-labeled attack number as the filename.

• ui package:

o JREMISA.java: the GUI and program execution point (main class).

D- 16

• “originals” package (no Java files in this package participate in jREMISA):

o QuickSortORIGINAL: Internet-acquired code treated as the original copy;

o NegSelectionKDDCUP99: this class was intended to decode and parse the

KDD Cup 99 data; it’s started but not finished;

o SSF.OS package: Internet-acquired code treated as the original copy.

Figure 65 depicts jREMISAs UML class diagram in the MVC architecture. For

the sake of brevity and keeping the diagram to one page, attributes and methods are not

included, other than the main class to indicate program launch point.

filter,
inspection,

verify,
negSelMITDARPA,

moea

Thread Runnable DataInputStreamDatagramSocketJPanel

JREMISA
…

Controller
…

<<interface>>
IObserver

…

1

cc

ui

DumpPro
…

Persistence
…

cc

BroadcastAbStorage

…
1QuickSort

…

b_UDP

cc

inthread,
thisGuard guard

l_UDP

UDPlistener
…

UDPbroadcaster

…

broadcastSocket packetm_listener
packet

View
(app kickoff)

Controller

Model

jREMISA
UML class

diagram in MVC
architecture

Java
classes above,

jREMISA
below

Facilitates
threading

Facilitates
networking

+main(args: String[])

DatagramPacket

Facilitates
I/O

Static
classes

Figure 65: jREMISA UML class diagram

D- 17

D.4 Special Source Code

We inserted Windows API system calls into misa.c and realgo.cpp to acquire a

nanosecond-precision timer for the purpose of comparing efficiency to its Java

counterpart (see Section 4.2):

// The below three lines aid in acquiring system time on the
nanosecond-level by accessing the Win32 API
// WARNING: This method of time-capture is effective only on single
core CPU architectures
#pragma comment(lib, "winmm.lib") // Additionally link this lib (same
as adding it in Config settings)
#include <windows.h>
#include <mmsystem.h>
...
// Get the high resolution counter's accuracy
QueryPerformanceFrequency(&ticksPerSecond);
QueryPerformanceCounter(&startClock); // MARK START TIME
...
QueryPerformanceCounter(&endClock); // MARK END TIME

printf("elapsed: %3.6f ms\n", ((double)(endClock.QuadPart -
startClock.QuadPart) / (double)ticksPerSecond.QuadPart) * 1000);

D.5 Source Code Availability

The source code for jREMISA and accompanying filtered MIT-DARPA 1999 week-one

and week-two data sets are not included as part of this document. Those interested in

obtaining a copy of either should direct their request to:

Dr. Gary B. Lamont

AFIT/ENG

2950 Hobson Way, Building 640

WPAFB, OH 45433-7765

Gary.Lamont@afit.edu

E- 1

Appendix E: Recommended Software Engineering Principles

This appendix is motivated by this researcher’s personal experience of constantly

acquiring software by others who code as if they never use it again. Such symptoms of

software engineering apathy include:

1. lack of regular commenting of code;

2. no “quick start” or compile guide;

3. using special software libraries (i.e., Dynamically-Linked Libraries or DLLs)

without indicating;

4. hard-wiring parameters and variables, preventing dynamic reconfiguration

without having to re-compile each time;

5. not including raw output files with software when surrendered to academic

institution.

Applications that are devoid of compile and execution help, usage statements and source

code commenting increase the software learning curve, consequently lessening the desire

to inherit such an application. The Institute of Electrical and Electronics Engineers

(IEEE) Standard 610.12-1990 defines software engineering as, “(1) The application of a

systematic, disciplined, quantifiable approach to the development, operation, and

maintenance of software; that is, the application of engineering to software. (2) The study

of approaches as in (1).” This definition implies constrained coding practices in

developing concisely written and understood software applications. Such practices can be

applied equally by software engineers and non-software engineers, alike, and reduces the

E- 2

learning curve, resulting in more time for application development. Hence, we

recommend the following basic software engineering practices:

1. ensure finished application compiles on school’s common lab computer—not just

the developer’s personal computer;

2. comment the code:

a. a terse paragraph at the top of the program file explaining its intent;

b. a comment summary of each method (function);

c. if employing a GUI, one-liner usage comment pop-up when the mouse or

cursor hovers over an input field or usage help next to the input field;

3. include a help statement explaining both execution and compile instructions and a

usage statement of all arguments and parameters;

4. include raw data files, in addition to source code, in the final software package;

5. avoid defining (“hardwiring”) values of variables in the code; allow for command

line arguments or GUI fields to facilitate changing values at runtime, without

recompiling.

Following these practices preserves software for future use by author and

successor, in both academia and real-world applications. The longer the time passed

between reusing code, the greater appreciation one has in more quickly understanding the

reason and manner in which the code was written. In summary, this author’s golden rule

is “code it as if your work is carried on.”

F- 1

Appendix F: The Benefits of Open-Source Software

This appendix is motivated by this researcher’s inability to acquire ID evaluation

results, signatures and data sets from proprietary sources such as anti-virus software

development companies. While the need to keep company secrets has merit, there exist

ways to still work with the leading ID software developers of the day. By not facilitating

an open dialogue, our few aging data sets continue to be the ID application developer’s

only benchmark against today’s new breed of attacks. If commercial entities still refuse to

communicate, then perhaps an open-source development approach needs to be taken.

To date, there have been many public debates, case studies and even an AFIT-

sanctioned course this researcher completed that contrasted the value and risk of open-

source, public domain source code versus proprietary software [Raymond00, MFH02,

HS02, HSE03]. One of the shortfalls of this software’s development is the inability to

sample IDS manufacturers’ signature generating and comparison methodologies.

Therefore, we recommend jREMISA’s lifecycle continue in an open-source manner for

the following reasons:

1. the prospect of free and conveniently available software entices more curious

people to experiment with this work;

2. multiple parties can develop it, while openly communicating ideas to each other

and improving the existing code;

3. public domain source code minimizes the possibility of malicious code or

exploitable vulnerabilities;

F- 2

4. the upgrade cycle is tightened due to less required formality (e.g., no marketing

and procedure for costly upgrading), allowing for quicker source code releases.

V- 1

Vita

Major (select) Charles R. Haag was commissioned in the Air Force in 1998

through the Reserve Officers Training Corps (ROTC) program at the Illinois Institute of

Technology, Detachment 195, where he earned his Bachelor of Science degree in

Computer Science, graduating “with honors.” From 2002-2005, Maj (sel) Haag had the

distinct privilege of serving with the 92d Information Warfare Aggressor Squadron as a

certified Blue and Red Team Chief and Red Team Operator Course (RTOC) cadre

member, performing network and physical vulnerability assessments at Air Force

installations, worldwide. Maj (sel) Haag has been awarded the Meritorious Service

Medal, the Air Force Commendation Medal and the Air Force Achievement Medal. Upon

graduation, Maj (sel) Haag will be assigned to the 83d Communications Squadron at

Langley Air Force Base, Virginia.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

22-03-2007
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)
January 2006 – March 2007

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

AN ARTIFICIAL IMMUNE SYSTEM-INSPIRED
MULTIOBJECTIVE EVOLUTIONARY ALGORITHM
WITH APPLICATION TO THE DETECTION OF
DISTRIBUTED COMPUTER NETWORK INTRUSIONS

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Haag, Charles, R., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/07-05

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ms. Christine M. Nickell, (comm) 410-854-6206, (fax) 410-854-7043
Chief, Academic Outreach (I02E)
ATTN: I02E, Ste 6744, 9800 Savage Rd, Ft. Meade, MD 20755-6744
c.nicke2@radium.ncsc.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Today’s predominantly-employed signature-based intrusion detection systems are reactive in nature and storage-limited. Their operation
depends upon catching an instance of an intrusion or virus after a potentially successful attack, performing post-mortem analysis on that instance
and encoding it into a signature that is stored in its anomaly database. The time required to perform these tasks provides a window of vulnerability
to DoD computer systems. Further, because of the current maximum size of an Internet Protocol-based message, the database would have to be
able to maintain 25665535 possible signature combinations. In order to tighten this response cycle within storage constraints, this thesis presents an
Artificial Immune System-inspired Multiobjective Evolutionary Algorithm intended to measure the vector of tradeoff solutions among detectors
with regard to two independent objectives: best classification fitness and optimal hypervolume size. Modeled in the spirit of the human biological
immune system and intended to augment DoD network defense systems, our algorithm generates network traffic detectors that are dispersed
throughout the network. These detectors promiscuously monitor network traffic for exact and variant abnormal system events, based on only the
detector’s own data structure and the ID domain truth set, and respond heuristically.
 The application domain employed for testing was the MIT-DARPA 1999 intrusion detection data set, composed of 7.2 million packets of
notional Air Force Base network traffic. Results show our proof-of-concept algorithm correctly classifies at best 86.48% of the normal and 99.9%
of the abnormal events, attributed to a detector affinity threshold typically between 39-44%. Further, four of the 16 intrusion sequences were
classified with a 0% false positive rate.
15. SUBJECT TERMS
intrusion detection, computer networks, stochastic search, computer security, evolutionary computation, artificial
immune system, multiobjective evolutionary algorithm
16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Gary B. Lamont, PhD, AFIT/ENG

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

224

19b. TELEPHONE NUMBER (Include area code)
(937) 785-3636, x4718
(gary.lamont@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	AIR FORCE INSTITUTE OF TECHNOLOGY
	
	Abstract
	 Acknowledgments
	Table of Contents
	
	List of Figures
	List of Tables
	List of Algorithms
	List of Equations
	List of Abbreviations
	I. Introduction
	1.1 Problem Motivation
	1.2 Research Focus
	1.2.1 Problem Domain Scope
	1.2.2 Approach

	1.3 Research Hypothesis
	1.4 Benchmarks of Validation
	1.5 Thesis Overview

	II. Literature Review
	2.1 The Intrusion Detection System
	2.1.1 IDS Topologies
	2.1.2 Signature and Anomaly Detection Methods

	2.2 The Human Biological Immune System (BIS)
	2.2.1 Pattern Recognition, Positive Selection and Negative Selection
	2.2.2 Clonal Selection Theory

	2.3 Artificial Immune Systems (AIS)
	2.3.1 Landscape and Ab-Ag Representation

	2.4 Search Algorithms
	2.4.1 Deterministic Search
	2.4.2 Stochastic Search and the Evolutionary Algorithm

	2.5 Multiobjective Evolutionary Algorithms
	2.6 Single and Multiobjective Optimization
	2.7 Pareto Optimality and Nondominance
	2.8 Summary

	III. High-Level Design and Specification
	3.1 Formal Problem Classification
	3.2 Space Complexity and Search Landscape
	3.3 Integrating an MOEA with the Generic AIS Model
	3.4 AIS Application Domain
	3.5 jREMISA: A Continued Work
	3.5.1 REALGO History
	3.5.2 MISA History

	3.6 jREMISA Design
	3.6.1 Data Representation
	3.6.2 Population Initialization and Negative Selection
	3.6.3 Evaluation (Fitness) Functions
	3.6.4 Recombination, Somatic Hypermutation and Affinity Maturation
	3.6.5 Selection Operator
	3.6.6 Detector and Generational Lifecycle
	3.6.7 Calculating the Pareto Front
	3.6.8 Distributed AIS Communication

	3.7 Summary

	IV. Low Level Design and Implementation
	4.1 Hardware and Software Requirements
	4.2 REALGO and MISA C-To-Java Language Translation
	4.2.1 The Model-View-Controller Paradigm

	4.3 Data Signature Design
	4.3.1 Antigen Data Set Encoding
	4.3.2 Antibody Population Generation

	4.4 AIS-Inspired MOEA Pseudocode
	4.4.1 Phase I: Negative Selection
	 4.4.2 Phase II: Core MOEA

	4.5 Distributed Communication Model
	4.6 Population Persistence
	4.7 Summary

	V. Experimentation and Analysis
	5.1 Experimental Objectives and Design
	5.1.1 Testing Environment
	5.1.2 Test Functions and Data Sets

	5.2 C-to-Java Migration
	5.3 1999 MIT-DARPA ID Data Set Evaluation
	5.3.1 Negative Selection Results
	5.3.2 Standalone MOEA Results
	5.3.3 Distributed MOEA Results

	5.4 Other MIT-DARPA ID Data Set Evaluation Algorithms
	5.5 Summary

	VI. Conclusions and Future Work
	6.1 Hypothesis Conclusion
	6.2 Conjectures Based on this Research
	6.2.1 Modeling the Innate Immune System
	6.2.2 Protocol-Based Antibody Populations

	6.3 jREMISA: “The Way Ahead”
	6.4 Continued Research Need
	6.4.1 Suitability of the MIT-DARPA ID data sets
	6.4.2 “Cyber Storm”: the next ID data set?

	6.5 Summary

	Bibliography
	Appendix A: ID-Domain Stochastic Search Algorithms
	A.1 Simulated Annealing (SA)
	A.2 Tabu Search (TS)
	A.3 Genetic Algorithm (GA)
	A.4 Evolutionary Strategy (ES)
	A.5 Evolutionary Programming (EP)
	A.6 Ant Colony Optimization (ACO)

	Appendix B: MIT-DARPA 1999 Week 2 Truth Set Mapping
	Appendix C: KDD Cup 99 Data Set
	Appendix D: jREMISA User Manual and Source Code
	D.1 Quick Start Guide
	D.2 User Manual
	D.2.1 Compiling and execution
	D.2.2 Negative Selection menu (Figure 58)
	D.2.3 MOEA Menu (Figure 59)
	D.2.4 “Data Structure [MIT-DARPA 99]” Menu (Figure 61)
	D.2.5 “Data Structure [KDD Cup 99]” Menu (Figure 62)
	D.2.6 “Packet Ops” Menu (Figure 63)

	D.3 jREMISA file hierarchy and UML class diagram
	D.4 Special Source Code
	D.5 Source Code Availability

	Appendix E: Recommended Software Engineering Principles
	Appendix F: The Benefits of Open-Source Software
	Vita

